19 research outputs found

    Neuronal differentiation of embryonic stem cells

    Get PDF
    AbstractNeuronal differentiation from totipotent precursors in vitro, is thought to require two signals: first a biophysical state (cellular aggregation) followed by a biochemical signal (retinoic acid treatment). In investigating the properties of retinoic acid-differentiated embryonic stem cell lines. However, we noted that retinoic acid treatment without prior aggregation, is sufficient to induce expression of the neuronal markers GAP-43 and NF-165. In agreement, immunohistochemistry revealed the presence of GAP-43 positive cells in these embryonic stem cell monolayers after three days of retinoic acid (RA) treatment. Furthermore an NF-165 positive subpopulation of cells was clearly observed after 4–5 days of RA treatment. The expression of these neuronal markers coincided with the appearance of electrically excitable cells, as assayed with whole cell patch clamp recording. We conclude that for neuronal differentiation of totipotent embryonic stem cells in vitro, one biochemical signal, i.e. retinoic acid treatment, is sufficient

    Regulation of the zebrafish goosecoid promoter by mesoderm inducing factors and Xwnt1

    Get PDF
    Goosecoid is a homeobox gene that is expressed as an immediate early response to mesoderm induction by activin. We have investigated the induction of the zebrafish goosecoid promoter by the mesoderm inducing factors activin and basic fibroblast growth factor (bFGF) in dissociated zebrafish blastula cells, as well as by different wnts in intact embryos. Activin induces promoter activity, while bFGF shows a cooperative effect with activin. We have identified two enhancer elements that are functional in the induction of the goosecoid promoter. A distal element confers activin responsiveness to a heterologous promoter in the absence of de novo protein synthesis, whereas a proximal element responds only to a combination of activin and bFGE Deletion experiments show that both elements are important for full induction by activin. Nuclear proteins that bind to these elements are expressed in blastula embryos, and competition experiments show that an octamer site in the activin responsive distal element is specifically bound, suggesting a role for an octamer binding factor in the regulation of goosecoid expression by activin. Experiments in intact embryos reveal that the proximal element contains sequences that respond to Xwnt1, but not to Xwnt5c. Furthermore, we show that the distal element is active in a confined dorsal domain in embryos and responds to overexpression of activin in vivo, as well as to dorsalization by lithium. The distal element is to our knowledge the first enhancer element identified that mediates the induction of a mesodermal gene by activin

    Sensitization of the histamine H1 receptor by increased ligand affinity.

    Get PDF
    Histamine regulates a variety of physiological processes including inflammation, gastric acid secretion, and neurotransmission. The cellular response to histamine is subject to dynamic control, and exaggerated histamine reactivity in response to cysteinyl leukotrienes and other stimuli is important in a variety of different pathological conditions. The molecular mechanisms controlling histamine responsiveness are still unresolved. In investigating histamine responses in embryonic stem (ES5) and F9 embryonic carcinoma cells, we encountered a novel mechanism controlling the cellular reaction to histamine. Unstimulated cells displayed neither

    EGF-induced jun B

    No full text

    Increased rate of capping of concanavalin A receptors during early Xenopus development is related to changes in protein and lipid mobility

    No full text
    The mobility characteristics of plasma membrane constituents were studied in dissociated cells from embryos of Xenopus laevis at various stages of development from early blastula until neurulation. An increased rate of fluorescein isothiocyanate-concanavalin A induced patching and capping of Con A-binding proteins during this period of development was correlated with a threefold increase in the lateral mobility of the receptor molecules, as determined by the fluorescent photobleaching recovery (FPR) method, the major change occurring at the onset of gastrulation. Using the same method, it was demonstrated that the lateral mobility of plasma membrane lipids increases twofold during this period of development. The major change being detectable, however, at the late blastula stage. This is in coincidence with the initiation of cell motility in dissociated Xenopus embryo cells. It is concluded that the lateral mobility of membrane proteins and lipids increases significantly during early Xenopus development, but are at least in part subject to different control mechanisms. The results suggest that the initiation of morphogenetic movements is related to changes in the dynamic properties of plasma membrane constituents.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore