5,843 research outputs found
Development and performance of power processor system for 2-gigahertz, 200-watt amplifier for communications technology satellite
The electrical and environmental requirements for a power processor system (PPS) designed to supply the appropriate voltages and currents to a 200-watt traveling wave tube (TWT) for a communication technology satellite is described. A block diagram of the PPS, the interface requirements between the PPS and spacecraft, the interface requirements between the PPS and 200-watt TWT, and the environmental requirements of the PPS are presented. Also included are discussions of protection circuits, interlocking sequences, and transient requirements. Predictions of the flight performance, based on ground test data, are provided
Identification of type A and B isolates of Epstein-Barr virus by polymerase chain reaction
A method is described for the identification of type A and type B isolates of Epstein-Barr virus (EBV) by means of the polymerase chain reaction. The use of three pairs of primers specific for genomic sequences coding for the two forms of EBV nuclear antigen (EBNA), 2A and 2B, and for a DNA sequence from the BamZ/BamR region allows the reliable and rapid detection of type A and B viruses in as little as 1000 EBV positive cells
Low temperature phase diagram and critical behaviour of the four-state chiral clock model
The low temperature behaviour of the four-state chiral clock () model
is reexamined using a systematic low temperature series expansion of the free
energy. Previously obtained results for the low temperature phases are
corrected and the low temperature phase diagram is derived. In addition, the
phase transition from the modulated region to the high temperature paraphase is
shown to belong to the universality class of the 3d-XY model.Comment: 17 pages in ioplppt style, 3 figure
Coarsening Dynamics of Crystalline Thin Films
The formation of pyramid-like structures in thin-film growth on substrates
with a quadratic symmetry, e.g., {001} surfaces, is shown to exhibit
anisotropic scaling as there exist two length scales with different time
dependences. Analytical and numerical results indicate that for most
realizations coarsening of mounds is described by an exponent n=0.2357.
However, depending on material parameters, n may lie between 0 (logarithmic
coarsening) and 1/3. In contrast, growth on substrates with triangular
symmetries ({111} surfaces) is dominated by a single length scale and an
exponent n=1/3.Comment: RevTeX, 4 pages, 3 figure
A mechanical, thermal and electrical packaging design for a prototype power management and control system for the 30 cm mercury ion thruster
A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned
Tropical peatlands: carbon stores, carbon gas emissions and contribution to climate change processes
Power Spectrum Analysis of LMSU (Lomonosov Moscow State University) Nuclear Decay-Rate Data: Further Indication of r-Mode Oscillations in an Inner Solar Tachocline
This article presents a power-spectrum analysis of 2,350 measurements of the
Sr/Y decay process acquired over the interval 4 August 2002 to 6
February 2009 at the Lomonosov Moscow State University (LMSU). As we have found
for other long sequences of decay measurements, the power spectrum is dominated
by a very strong annual oscillation. However, we also find a set of
low-frequency peaks, ranging from 0.26 year to 3.98 year, which
are very similar to an array of peaks in a power spectrum formed from Mt Wilson
solar diameter measurements. The Mt Wilson measurements have been interpreted
in terms of r-mode oscillations in a region where the sidereal rotation
frequency is 12.08 year. We find that the LMSU measurements may also be
attributed to the same type of r-mode oscillations in a solar region with the
same sidereal rotation frequency. We propose that these oscillations occur in
an inner tachocline that separates the radiative zone from a more slowly
rotating solar core.Comment: 5 pages, 8 figures. v2 corrects three typographical errors on page 3,
including the missing list of r-modes in sec. 3, para
Investigation of methods to produce a uniform cloud of fuel particles in a flame tube
The combustion of a uniform, quiescent cloud of 30-micron fuel particles in a flame tube was proposed as a space-based, low-gravity experiment. The subject is the normal- and low-gravity testing of several methods to produce such a cloud, including telescoping propeller fans, air pumps, axial and quadrature acoustical speakers, and combinations of these devices. When operated in steady state, none of the methods produced an acceptably uniform cloud (+ or - 5 percent of the mean concentration), and voids in the cloud were clearly visible. In some cases, severe particle agglomeration was observed; however, these clusters could be broken apart by a short acoustic burst from an axially in-line speaker. Analyses and experiments reported elsewhere suggest that transient, acoustic mixing methods can enhance cloud uniformity while minimizing particle agglomeration
The Importance of Boundary Conditions in Quantum Mechanics
We discuss the role of boundary conditions in determining the physical
content of the solutions of the Schrodinger equation. We study the
standing-wave, the ``in,'' the ``out,'' and the purely outgoing boundary
conditions. As well, we rephrase Feynman's prescription as a
time-asymmetric, causal boundary condition, and discuss the connection of
Feynman's prescription with the arrow of time of Quantum
Electrodynamics. A parallel of this arrow of time with that of Classical
Electrodynamics is made. We conclude that in general, the time evolution of a
closed quantum system has indeed an arrow of time built into the propagators.Comment: Contribution to the proceedings of the ICTP conference "Irreversible
Quantum Dynamics," Trieste, Italy, July 200
Nuclear currents based on the integral form of the continuity equation
We present an approach to obtain new forms of the nuclear electromagnetic
current, which is based on an integral form of the continuity equation. The
procedure can be used to restore current conservation in model calculations in
which the continuity equation is not verified. Besides, it provides, as a
particular result, the so-called Siegert's form of the nuclear current, first
obtained by Friar and Fallieros by extending Siegert's theorem to arbitrary
values of the momentum transfer. The new currents are explicitly conserved and
permit a straightforward analysis of their behavior at both low and high
momentum transfers. The results are illustrated with a simple nuclear model
which includes a harmonic oscillator mean potential.Comment: 19 pages, revtex, plus 2 PS figure
- …
