33 research outputs found

    The Choice of the People: Direct Legislation, Abortion Policy, and the American Democratic Ideal

    Get PDF
    Senior Project submitted to The Division of Social Studies of Bard College

    Gendered Dietary Supplements: Does the Marketing Reflect Different Formulations?

    Get PDF
    Many dietary supplements are marketed with gendered terms, such as “for her” and “for him.” However, whether these statements reflect different nutrient contents of products and a biological basis has not been systematically examined. PURPOSE: The purpose of this analysis was to compare the micronutrient content of dietary supplements that are sold in separate forms based on gendered marketing. METHODS: The National Institutes of Health Dietary Supplements Label Database (DSLD) was searched using gendered terms, such as “hers,” “her,” “women,” “his,” “him,” and “men.” Eighty-nine pairs of micronutrient-containing products that were commercially available as a women’s version and a men’s version were identified. Nutrients included in the analysis included common vitamins (biotin, choline, folate/folic acid, niacin, pantothenic acid, riboflavin, thiamine, and vitamins A, B12, B6, C, D, E, and K) and minerals (calcium, chloride, chromium, copper, iodine, iron, magnesium, manganese, molybdenum, phosphorus, potassium, selenium, and zinc). Nutrient quantities in units of % Daily Value (%DV) were compared between gendered marketing categories using independent-samples t-tests and calculation of effect sizes using Cohen’s d. Data were analyzed using R (v. 4.2.1) and the rstatix package. RESULTS: Statistically significant differences were observed between gendered marketing categories for iron (n=40 pairs; women’s: 85±42%; men’s: 6±14%; p\u3c0.001; effect size: 2.56 [large]) and calcium (n=62 pairs; women’s: 26±19%; men’s: 16±13%; p=0.03; effect size: 0.57 [moderate]), but no other nutrients. CONCLUSION: Micronutrient-containing supplements marketed specifically to women and men primarily had similar micronutrient content, except for higher iron and calcium in women’s products. For iron, this difference is reflective of anticipated biological need, as acknowledged by a higher Recommended Dietary Allowance (RDA) for adolescent and adult females up to age 50 (8 to 27 mg/d) as compared to males (8 mg/d). For calcium, the RDA is equivalent for males and females at all ages, except for ages 51-70 years (females: 1,200 mg/d; males: 1,000 mg/d). Therefore, the observed differences in iron and calcium appear to have a legitimate biological basis, although for specific age ranges. In conclusion, few differences in micronutrient content were seen between products marketed specifically as women’s or men’s products. However, the observed differences in iron and calcium may be reflective of biological need in select age groups

    Body Fat Percentage and Hormonal Intrauterine Device Use Are Independently Associated with Self-Reported Menstrual Regularity in Young Adult Females

    Get PDF
    Menstrual regularity is a key indicator of energy availability, long-term bone density, and other important health information in females. The occurrence of a regular menstrual cycle indicates that an individual’s level of estrogen is supportive of strong bones and that they are achieving the caloric intake required to support their activity level. In contrast, an irregular menstrual cycle can be indicative of insufficient energy availability which may, over time, result in low bone mineral density and thus a higher risk of bone stress injuries. However, hormonal contraceptive use, including the rising use of intrauterine devices (IUDs), may mask these changes in menstrual regularity. PURPOSE: The purpose of this study was to examine factors related to self-reported menstrual regularity among a population of young, generally healthy females. METHODS: Participants were included if they were no more than 50 years of age at the time of enrollment and had less than 50% body fat as assessed via dual-energy x-ray absorptiometry (DXA). Participants were asked via questionnaire if they reported having a regular menstrual cycle, defined as menstrual periods occurring at predictable intervals and no missed periods in the past six months. Additionally, participants were asked if they were currently using any form of hormonal contraception, and if so, what type. A logistic regression was run with menstrual regularity (1 = regular; 0 = irregular) as the dependent variable and body fat percentage (BFP) and contraceptive type as the predictors. RESULTS: Out of the 76 participants (mean±SD age: 23.2±5.1 years; height: 164.5±6.5 cm; weight: 65.2±13.6 kg; BFP: 32.3±8.5%), 54 (71%) reported having a regular menstrual cycle. Of the 45 (59%) participants using hormonal contraception, 27 (60%) used a combined oral contraceptive pill, six (13%) used a progestin-only pill, nine (20%) used an IUD, two (4%) used a hormonal implant, and one (2%) used a vaginal ring. Overall, a higher BFP was associated with a greater likelihood of menstrual regularity (coefficient±SE: 0.08 ± 0.04; p = 0.04) while IUD use was associated with a lower likelihood (coefficient±SE: -1.8 ± 0.9; p = 0.04). No other hormonal contraception type was independently associated with self-reported menstrual regularity. CONCLUSION: These results collectively suggest, within a population of generally healthy, young adult females, that lower BFP and hormonal IUD use are both independently associated with a lower likelihood of having a regular menstrual cycle. When assessing the lack of a regular menstrual cycle, practitioners may consider hormonal IUD use as one potential factor in addition to a general assessment of body composition and energy availability. However, this analysis was limited by a relatively small sample size, which may have reduced the ability to detect the relationship between menstrual regularity and less commonly used contraceptive types. Future research is required to determine the relationship between these contraceptive types and menstrual regularity in generally healthy adult females

    Exploring the Role of Mental Toughness in Bone Mineral Content: A Preliminary Study

    Get PDF
    Bone mineral content (BMC), a measure of the mineral content within a person’s bones, is an important parameter in the assessment of bone health. Changes in BMC can be indicative of bone-related conditions. Dual-energy X-ray absorptiometry (DXA) is one of the most widely used and accurate methods for measuring BMC. Sex, age, race, and BMI are known to influence BMC. Physical activity is positively related to BMC levels. Mental toughness (MT) is conceptualized as a state-like psychological resource conducive to goal-oriented pursuits and is positively linked to physical activity outcomes. The relationship between MT and BMC has not been explored. PURPOSE: To investigate the isolated effect of MT on BMC after eliminating the confounding effects of sex, age, race, and BMI. METHODS: A total of 95 individuals participated in the study across two study sites. The sample (Mage = 34.57, SD = 15.87) was predominantly White (64%), normal weight/overweight (MBMI = 25.96, SD = 4.88) males (54%). DXA scans were performed on calibrated scanners using standard procedures. MT was assessed via the Mental Toughness Index (MTI). To reduce measurement error, the MTI was administered twice, separated by a two-week interval. A linear regression model was used to analyze the relationship between BMC and the average of the two MTI scores, while controlling for sex, age, race, and BMI in MATLAB (R2023a). A Cohen’s d for MT and BMC was additionally conducted. RESULTS: The linear regression model was BMC ~ 1 + Sex + Age + Race + BMI + MT. The overall regression was statistically significant (R2 = 0.183, F(94, 88) = 2.78, p = .012). MT was found to significantly predict BMC (β = 0.093, p = .008, d = 2.7). CONCLUSION: The findings underscore the statistical significance of MT as a predictor of BMC, even when accounting for the influence of sex, age, race, and BMI. The effect size points to the practical significance of this relationship, suggesting that individuals with higher MT levels may exhibit greater BMC. Future investigations should consider incorporating demographic covariates to gain deeper insights into these relationships and conduct interventional studies to identify potential underlying mechanisms (e.g., how trainable MT could be linked, to some degree, with an increase in BMC)

    The Effect of Body Composition Methodology on Resulting Energy Availability Assessments

    Get PDF
    Energy availability (EA) is defined as the total daily energy available to an individual after accounting for that expended during exercise and standardized to fat-free mass (FFM). Generally, EA values less than 30 kcal/kg FFM/day are considered “low” and have been associated with deleterious effects on reproductive and hormonal health in females. However, it is unclear whether the method used to estimate FFM influences the resulting EA values to a degree that may affect interpretation and clinical decision-making. PURPOSE: To determine the effect of FFM values derived from various methods of body composition assessment on the resulting range and interpretation of EA values. METHODS: Four EA estimates were generated in 38 healthy females (mean ± SD age: 25.6 ± 6.2 years; height: 163.6 ± 7.4 cm; weight: 64.7 ± 13.8 kg) using different combinations within a reasonable range of lower and higher (25 and 35 kcal/kg bodyweight, respectively) energy intake values and lower and higher (3.5 and 7 kcal/kg bodyweight, respectively) exercise energy expenditure values. Resulting estimates were then standardized to FFM values from air displacement plethysmography (ADP), bioelectrical impedance spectroscopy (BIS), and bioelectrical impedance analysis (BIA) from both a research-grade (multi-frequency) and consumer-grade (dual-frequency) device. Resulting EA values were then compared to those using FFM from dual-energy x-ray absorptiometry (DXA). Each estimate was assigned to one of three EA “zones”: “low” (less than 30 kcal/kg FFM), “reduced” (30-44.9 kcal/kg FFM), or “adequate” (≥45 kcal/kg FFM). Individual EA estimates that were in different zones when compared between two devices were considered discordant. RESULTS: When compared to DXA-derived estimates, EA values were discordant in up to 13-16% of individuals depending on body composition method used. Discordant values were generally more common in the plots assuming higher (35 kcal/kg bodyweight) energy intake values and were most likely to be considered “adequate” using DXA-derived FFM versus “reduced” using alternate methods. CONCLUSION: EA estimates are generally robust to the method of body composition assessment used. However, divergent interpretations may occur in a small minority of individuals in which alternate methods may provide lower EA values than DXA

    A Between-sex Comparison of the Validity of Body Fat Percentage Estimates From Four Bioelectrical Impedance Analyzers

    Get PDF
    Bioelectrical impedance analysis (BIA) devices administer electrical currents through surface electrodes in contact with the hands and/or feet. The measured reactance and resistance of various bodily tissues to these currents are then used to estimate body fat percentage (BFP) and other body composition values of interest based on algorithms derived from validation data. Owing to different patterns of fat distribution between sexes, it is unclear whether the configuration of electrodes (i.e., hand-to-hand, foot-to-foot, or hand-to-foot) may affect the validity of these devices in males versus females. PURPOSE: The purpose of this study was to determine the validity of BFP values across four BIA devices – one consumer-grade foot-to-foot device (RENPHO Smart Bathroom Scale), one consumer-grade hand-to-hand device (Omron HBF-306), one consumer-grade octapolar device (InBody H20N), and one research-grade octapolar device (Seca mBCA 515/514) – against a criterion four-compartment model (4C), and to compare these values between males and females. METHODS: Seventy-four healthy participants (35 males and 39 females) were included in this analysis. Participants abstained from all food, fluid, caffeine, and alcohol for at least 8 hours prior to each visit. Total error (TE) was calculated as the root mean square error between the estimate of each BIA device and that of the 4C model. Standard error of the estimate (SEE) was defined as the residual standard error value from ordinary least squares regression. Constant error (CE) was calculated as the average difference between the estimate of each BIA device and that of the 4C model. RESULTS: Participants had a mean ±SD age of 27.2 ±7.3 years, height of 168.1 ±8.9 cm, weight of 72.2 ±16.7 kg, and 4C BFP of 24.9 ±9.2%. In the entire sample, ranges for validity metrics of interest were as follows: TE: 3.2% (Seca) to 7.2% (RENPHO); SEE: 3.3% (Seca) to 5.7% (RENPHO); CE: -0.02 ±3.4% (InBody) to -3.46 ±4.1% (Omron). Across all devices, both TE and SEE were lower in females, with the largest between-sex differences observed for the InBody and RENPHO. Both octapolar devices (InBody and Seca) exhibited low group-level error in males and females (all CE within ±0.32%). Meanwhile, the RENPHO and Omron devices generally underestimated BFP with a greater degree of underestimation in females (CE of -2.6% and -3.7%, respectively) than males (CE of -0.1% and -3.2%, respectively), particularly for the RENPHO. CONCLUSION: Among the four BIA devices investigated, octapolar devices tended to have higher validity overall. All devices demonstrated lower TE and SEE in females, with the greatest between-sex differences observed in the InBody and RENPHO models. Users should be aware that commercially available hand-to-hand or foot-to-foot BIA devices such as the Omron and RENPHO models used in this study may systematically underestimate BFP compared to a criterion 4C model. In contrast, hand-to-foot octapolar analyzers exhibit strong group-level validity in both sexes

    Alpha-Cyclodextrin-Containing Beverages for Hydration Enhancement in Humans

    Get PDF
    A substantial portion of the world’s population may be inadequately hydrated, and dehydration is associated with several disease states and acute impairments in exercise performance. As such, there is continued interest in novel strategies to promote adequate hydration. The carbohydrate alpha-cyclodextrin has recently been shown to enhance water uptake through human aquaporins expressed in a single-cell model and promote longevity in model multicellular organisms. However, there is no relevant human research examining the potential hydrating effects of alpha-cyclodextrin-containing beverages. PURPOSE: To determine if novel beverage formulations containing alpha-cyclodextrin improve a bioimpedance-based hydration marker in humans. METHODS: In a randomized, double-blind, crossover design, eight adults (5 M, 3 F; [mean ± SD] age: 24.9 ± 4.2 years; height: 169.6 ± 5.5 cm; weight: 71.2 ± 13.2 kg; body mass index: 24.6 ± 3.2 kg/m2; body fat: 17.0 ± 5.6%) completed trials including the ingestion of 1 liter of still water (control; CON), still water plus alpha-cyclodextrin (CD), or still water plus alpha- cyclodextrin and complexing agents (B-vitamins and amino acids; Complex). Before beverage ingestion, and every 15 minutes for two hours following beverage ingestion, bioimpedance spectroscopy was performed to estimate phase angle values as a noninvasive marker of cellular hydration. Phase angle was calculated as: arctan(/) × (180°/), where Xc is the reactance (indicative of the capacitive properties of the cell membrane) and R is resistance (opposition to flow of electrical current), both obtained from bioimpedance spectroscopy. Due to the pilot nature of this trial, data were analyzed using descriptive statistics only (data presented as median ± interquartile range). RESULTS: Two hours after completion of beverage ingestion, median ± interquartile range changes in phase in angle were 3.4 ± 1.7% for CON, 4.6 ± 1.2% for CD, and 5.4 ± 3.3% for Complex. Xc changes were 9.9 ± 2.9% for CON, 10.9 ± 3.0% for CD, and 11.1 ± 3.1% for Complex. R changes were 6.5 ± 1.4% for CON, 6.8 ± 1.9% for CD, and 5.6 ± 1.1% for Complex. CONCLUSION: The results of this pilot study indicate the potential for alpha-cyclodextrin- containing beverages to improve a bioimpedance-based hydration marker, phase angle, in humans, with the potential that B-vitamins and amino acids may further enhance hydration beyond alpha-cyclodextrin alone. The larger improvements in phase angle in the Complex group were due to a greater increase in bioelectrical reactance alongside a smaller increase in bioelectrical resistance. Future research with larger sample sizes should examine the potential for these beverages to improve human hydration and health

    Comparison of Laboratory-Grade and Consumer-Grade Hand-to-Foot Bioelectrical Impedance Analyzers for Body Composition Estimation

    Get PDF
    Bioelectrical impedance analysis (BIA) is a simple and effective technique to estimate body composition, including body fat percentage (BFP). While these analyzers are a popular method of describing a person’s body composition, laboratory-grade devices are expensive and inaccessible to most people. As a result, they may be an unrealistic method for consumers to use. However, consumer-grade devices are increasingly available. PURPOSE: The purpose of this study was to compare laboratory-grade and consumer-grade bioelectrical impedance analyzers. METHODS: Seventy-five adults (40 F, 35 M) were evaluated using a laboratory-grade, hand-to-foot, multifrequency bioelectrical impedance analyzer (BIALAB; Seca mBCA 515) and a consumer-grade, hand-to-foot, single frequency bioelectrical impedance analyzer (BIACON; Omron HBF-516). Both devices administer undetectable electrical pulses through one extremity that are measured at another extremity, where the voltage drop (impedance) is determined. This information is used to estimate body fluids and composition. RESULTS: A strong, statistically significant correlation between devices was observed for BFP (r: 0.93, R2: 0.87, pCON overestimated BFP by 3.5 ± 3.4% (mean ± SD) relative to BIALAB (BIACON: 28.3 ± 9.6%; BIALAB: 24.8 ± 9.3%; pCONCLUSION: These results collectively suggest that while the laboratory-grade and consumer-grade analyzers in our study exhibit strong correlations when assessing a group of individuals, the consumer-grade device overestimates BFP. Additionally, the SEE indicates that 3.4% error can be expected with the consumer-grade device. Overall, the Omron HBF-516 consumer-grade device may be an adequate and affordable option to estimate body composition in some contexts, but results should be interpreted cautiously when used in individuals

    Validity of Hand-to-Foot and Foot-to-Foot Consumer Bioimpedance Analyzers: A Four-Compartment Model Comparison

    Get PDF
    Body fat percentage (BF%) is a useful variable for predicting disease risk and determining overall fitness. Consumer-grade bioimpedance analyzers seek to provide accurate body composition data while remaining affordable and accessible. PURPOSE: The purpose of this study was to compare body fat percentages obtained from hand-to-foot and foot-to-foot consumer bioimpedance analyzers to a gold standard 4-compartment (4C) model. METHODS: Seventy-five adults (40 F, 35 M; age: 27.2 ± 7.3 y; height: 168.1 ± 8.8 cm; BM: 72.1 ± 16.6 kg; 4C model BF%: 25.0 ± 9.2%) were evaluated by a 4C model, a consumer-grade hand-to-foot bioimpedance analyzer (BIA-HF; Tanita BC568) and two consumer-grade foot-to-foot bioimpedance analyzers (BIA-FF; Tanita BC554 and Tanita UM081). The 4C model comprised dual-energy X-ray absorptiometry, air displacement plethysmography, and bioimpedance spectroscopy. BF% estimates obtained by each bioimpedance analyzer were compared to the criterion 4C using the coefficient of determination (R2), standard error of the estimate (SEE), and Bland-Altman analysis. RESULTS: BIA-HF underestimated BF% by 1.4 ± 4.1%, and both BIA-FF overestimated BF% by 0.5 to 0.6 ± 5.7%. The R2 value was higher for BIA-HF as compared to both BIA-FF analyzers (0.81 vs. 0.64). The SEE and 95% limits of agreement (LOA) were lower for BIA-HF (SEE: 4.0%; LOA: 8.1%) as compared to both BIA-FF (SEE: 5.6%; LOA: 11.2%). No method demonstrated proportional bias based on Bland-Altman analysis. CONCLUSION: While both hand-to-foot and foot-to-foot consumer-grade bioimpedance analyzers demonstrated potentially meaningful errors when compared to a gold standard method, the hand-to-foot device exhibited better overall performance. Specifically, a stronger linear agreement with the 4C model and lower individual-level errors were observed with the hand-to-foot model as compared to both foot-to-foot models from the same manufacturer. The superior performance of the hand-to-foot analyzer could be due to its direct testing of both the upper and lower body, which is more similar to the methods used in the 4C model and a better representation of an individual’s overall body composition

    Day-to-Day Precision Error and Least Significant Change for Two Commonly Used Bioelectrical Impedance Analysis Devices

    Get PDF
    Bioelectrical impedance analysis (BIA) devices administer electrical currents through surface electrodes to estimate overall body fluids from the measured resistance and reactance of bodily tissues. The proportion of fat versus fat-free mass can be further estimated by these devices using algorithms developed from reference data. BIA devices are commonly used in field as well as laboratory settings due to their convenience, ease of use, and relatively low cost. PURPOSE: The purpose of this study was to determine the day-to-day precision error (PE) and least significant change (LSC) of the percent body fat (PBF), fat mass (FM), and fat-free mass (FFM) estimated by two commonly used BIA devices, the InBody 770 and the Omron HBF-306. METHODS: Seventeen healthy participants (7 males, 10 females) were included in this analysis. Participants visited the laboratory on two separate occasions no more than 48 hours apart and abstained from all food, fluid, caffeine, and alcohol for at least 8 hours prior to each visit. Height and weight were measured using a Seca 769 stadiometer and digital scale. PE was calculated as , where SD is the within-subject standard deviation. LSC was calculated as 2.77 * PE to reflect a 95% confidence level. RESULTS: Participants had a mean ±SD age of 27.1 ±8.3 years, height of 171.6 ±8.5 cm, and weight of 68.0 ±10.6 kg. PE for the InBody was 1.0%, 0.7 kg, and 0.9 kg for PBF, FM, and FFM, respectively; PE for the Omron was 0.6%, 0.4 kg, and 0.6 kg for the same variables. The LSC values of each variable for the InBody were 2.8%, 1.9 kg, and 2.4 kg for PBF, FM, and FFM, respectively; the LSC values for these variables were 1.5%, 1.0 kg, and 1.6 kg for the Omron device. CONCLUSION: Individuals looking to use BIA as a method of detecting true changes in body composition over time should be aware that day-to-day measurement error between estimates were as as high as 1.0% for body fat, 0.7 kg for fat mass, and 0.9 kg for fat-free mass in the current study; therefore, changes within these parameters likely reflect error of measurement and not true physiological differences. Additionally, changes over time between estimates from an InBody 770 device should meet or exceed a difference of at least 2.8% body fat, 1.9 kg FM, or 2.4 kg FFM to increase confidence that the differences are a reflection of physiological changes rather than between-day measurement error; differences between readings from an Omron should meet or exceed 1.5% body fat, 1.0 kg FM, or 1.6 kg FFM for this purpose. The InBody 770 demonstrated higher precision error and thus may entail a higher least significant change to meaningfully detect true physiological changes between time points. However, the observed differences in these values between the InBody 770 and Omron HBF-306 may also indicate that the InBody 770 is more sensitive to small but real changes in bioelectrical impedance values between days. Longitudinal studies are needed to elucidate the comparative tracking validity of these commonly used BIA devices in healthy populations
    corecore