48 research outputs found

    Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex

    Get PDF
    Recent experimental work in animals has emphasized the importance of homeostatic plasticity as a means of stabilizing the properties of neuronal circuits. Here, we report a phenomenon that indicates a homeostatic pattern of cortical plasticity in healthy human subjects. The experiments combined two techniques that can produce long-term effects on the excitability of corticospinal output neurons: transcranial direct current stimulation (TDCS) and repetitive transcranial magnetic stimulation (rTMS) of the left primary motor cortex. "Facilitatory preconditioning" with anodal TDCS caused a subsequent period of 1 Hz rTMS to reduce corticospinal excitability to below baseline levels for >20 min. Conversely, "inhibitory preconditioning" with cathodal TDCS resulted in 1 Hz rTMS increasing corticospinal excitability for at least 20 min. No changes in excitability occurred when 1 Hz rTMS was preceded by sham TDCS. Thus, changing the initial state of the motor cortex by a period of DC polarization reversed the conditioning effects of 1 Hz rTMS. These preconditioning effects of TDCS suggest the existence of a homeostatic mechanism in the human motor cortex that stabilizes corticospinal excitability within a physiologically useful range

    Alterations in Task-Related Brain Activation in Children, Adolescents and Young Adults at Familial High-Risk for Schizophrenia or Bipolar Disorder - A Systematic Review.

    Get PDF
    Children, adolescents, and young adults with at least one first-degree relative [familial high-risk (FHR)] with either schizophrenia (SZ) or bipolar disorder (BD) have a one-in-two risk of developing a psychiatric disorder. Here, we review functional magnetic resonance imaging (fMRI) studies which examined task-related brain activity in young individuals with FHR-SZ and FHR-BD. A systematic search identified all published task-related fMRI studies in children, adolescents, and young adults below an age of 27 years with a first-degree relative with SZ or BD, but without manifest psychotic or affective spectrum disorder themselves. The search identified 19 cross-sectional fMRI studies covering four main cognitive domains: 1) working memory (n = 3), 2) cognitive control (n = 4), 3) reward processing (n = 3), and 4) emotion processing (n = 9). Thirteen studies included FHR-BD, five studies included FHR-SZ, and one study included a pooled FHR group. In general, task performance did not differ between the respective FHR groups and healthy controls, but 18 out of the 19 fMRI studies revealed regional alterations in task-related activation. Brain regions showing group differences in peak activation were regions associated with the respective task domain and showed little overlap between FHR-SZ and FHR-BD. The low number of studies, together with the low number of subjects, and the substantial heterogeneity of employed methodological approaches within the domain of working memory, cognitive control, and reward processing impedes finite conclusions. Emotion processing was the most investigated task domain in FHR-BD. Four studies reported differences in activation of the amygdala, and two studies reported differences in activation of inferior frontal/middle gyrus. Together, these studies provide evidence for altered brain processing of emotions in children, adolescents, and young adults at FHR-BD. More studies of higher homogeneity, larger sample sizes and with a longitudinal study design are warranted to prove a shared or specific FHR-related endophenotypic brain activation in young first-degree relatives of individuals with SZ or BD, as well as to pinpoint specific alterations in brain activation during cognitive-, emotional-, and reward-related tasks

    Premotor Gray Matter Volume is Associated with Clinical Findings in Idiopathic and Genetically Determined Parkinson’s Disease

    Get PDF
    In the present voxel-based morphometric study, we investigated whether the severity and duration of disease are associated with alterations in gray matter volume (GMV) in symptomatic Parkin mutation carriers (sPARKIN-MC) and patients with idiopathic Parkinson’s disease (iPD). Regression analyses revealed different negative correlations between GMV in cortical motor areas and the severity as well as the disease duration in sPARKIN-MC and iPD patients. SPARKIN-MC showed a less involvement of cortical motor areas, in particular in the supplementary motor area (SMA) than iPD patients. Specifically, in iPD patients, but not in sPARKIN-MC, there was a negative correlation between the SMA degeneration and the UPDRS-II item freezing. The different degeneration patterns may mirror diverse kinetics of the disease progress in these two groups of PD patients with different underlying etiologies

    The Danish High Risk and Resilience Study-VIA 11: Study Protocol for the First Follow-Up of the VIA 7 Cohort -522 Children Born to Parents With Schizophrenia Spectrum Disorders or Bipolar Disorder and Controls Being Re-examined for the First Time at Age 11.

    Get PDF
    Introduction: Offspring of parents with severe mental illness have an increased risk of developing mental illnesses themselves. Familial high risk cohorts give a unique opportunity for studying the development over time, both the illness that the individual is predisposed for and any other diagnoses. These studies can also increase our knowledge of etiology of severe mental illness and provide knowledge about the underlying mechanisms before illness develops. Interventions targeting this group are often proposed due to the potential possibility of prevention, but evidence about timing and content is lacking. Method: A large, representative cohort of 522 7-year old children born to parents with schizophrenia, bipolar disorder or controls was established based on Danish registers. A comprehensive baseline assessment including neurocognition, motor functioning, psychopathology, home environment, sociodemographic data, and genetic information was conducted from January 1, 2013 to January 31, 2016. This study is the first follow-up of the cohort, carried out when the children turn 11 years of age. By assessing the cohort at this age, we will evaluate the children twice before puberty. All instruments have been selected with a longitudinal perspective and most of them are identical to those used at inclusion into the study at age 7. A diagnostic interview, motor tests, and a large cognitive battery are conducted along with home visits and information from teachers. This time we examine the children's brains by magnetic resonance scans and electroencephalograms. Measures of physical activity and sleep are captured by a chip placed on the body, while we obtain biological assays by collecting blood samples from the children. Discussion: Findings from the VIA 7 study revealed large variations across domains between children born to parents with schizophrenia, bipolar and controls, respectively. This study will further determine whether the children at familial risk reveal delayed developmental courses, but catch up at age 11, or whether the discrepancies between the groups have grown even larger. We will compare subgroups within each of the familial high risk groups in order to investigate aspects of resilience. Data on brain structure and physical parameters will add a neurobiological dimension to the study

    Weight-Specific Anticipatory Coding of Grip Force in Human Dorsal Premotor Cortex (April, pg 5272, 2012)

    Get PDF
    Contains fulltext : 110199_corr.pdf (publisher's version ) (Open Access) Contains fulltext : 110199.pdf (publisher's version ) (Open Access

    The dynamic regulation of cortical excitability is altered in episodic ataxia type 2.

    Get PDF
    Contains fulltext : 88931.pdf (publisher's version ) (Open Access)Episodic ataxia type 2 and familial hemiplegic migraine are two rare hereditary disorders that are linked to dysfunctional ion channels and are characterized clinically by paroxysmal neurological symptoms. Impaired regulation of cerebral excitability is thought to play a role in the occurrence of these paroxysms, but the underlying mechanisms are poorly understood. Normal ion channels are crucial for coordinating neuronal firing in response to facilitatory input. Thus, we hypothesized that channel dysfunction in episodic ataxia type 2 and familial hemiplegic migraine may impair the ability to adjust cerebral excitability after facilitatory events. We tested this hypothesis in patients with episodic ataxia type 2 (n = 6), patients with familial hemiplegic migraine (n = 7) and healthy controls (n = 13). All subjects received a high-frequency burst (10 pulses at 20 Hz) of transcranial magnetic stimulation to transiently increase the excitability of the motor cortex. Acute burst-induced excitability changes were probed at 50, 250, 500 and 1000 ms after the end of the burst. This was done using single-pulse transcranial magnetic stimulation to assess corticospinal excitability, and paired-pulse transcranial magnetic stimulation at an interstimulus interval of 2 and 10 ms to assess intracortical inhibition and facilitation, respectively. The time course of burst-induced excitability changes differed between groups. Healthy controls showed a short-lived increase in excitability that was only present 50 ms after the burst. In contrast, patients with episodic ataxia type 2 showed an abnormally prolonged increase in corticospinal excitability that was still present 250 ms after the transcranial magnetic stimulation burst. Furthermore, while controls showed a decrease in intracortical facilitation during the 1 s period following the transcranial magnetic stimulation burst, patients with episodic ataxia type 2 had increased intracortical facilitation 1000 ms after the burst. Intracortical inhibition was unaltered between groups. Patients with familial hemiplegic migraine were not significantly different from either controls or patients with episodic ataxia type 2. Together, these findings indicate that patients with episodic ataxia type 2 have an excessive increase in motor cortex excitability following a strong facilitatory input. We argue that this deficient control of cortical excitability may set the stage for the emergence of paroxysmal neural dysfunction in this disorder.1 december 201

    Weight-specific anticipatory coding of grip force in human dorsal premotor cortex.

    Get PDF
    Contains fulltext : 110200.pdf (publisher's version ) (Open Access)The dorsal premotor cortex (PMd) uses prior sensory information for motor preparation. Here, we used a conditioning-and-map approach in 11 healthy male humans (mean age 27 years) to further clarify the role of PMd in anticipatory motor control. We transiently disrupted neuronal processing in PMd, using either continuous theta burst stimulation (cTBS) at 80% (inhibitory cTBS) or 30% (sham cTBS) of active motor threshold. The conditioning effects of cTBS on preparatory brain activity were assessed with functional MRI, while participants lifted a light or heavy weight in response to a go-cue (S2). An additional pre-cue (S1) correctly predicted the weight in 75% of the trials. Participants were asked to use this prior information to prepare for the lift. In the sham condition, grip force showed a consistent undershoot, if the S1 incorrectly prompted the preparation of a light lift. Likewise, an S1 that falsely announced a heavy weight produced a consistent overshoot in grip force. In trials with incorrect S1, preparatory activity in left PMd during the S1-S2 delay period predicted grip force undershoot but not overshoot. Real cTBS selectively abolished this undershoot in grip force. Furthermore, preparatory S1-S2 activity in left PMd no longer predicted the individual undershoot after real cTBS. Our results provide converging evidence for a causal involvement of PMd in anticipatory downscaling but not upscaling of grip force, suggesting an inhibitory role of PMd in anticipatory grip force control during object lifting

    Repetitive transcranial magnetic stimulation to improve mood and motor function in Parkinson's disease.

    No full text
    Contains fulltext : 50358.pdf (publisher's version ) (Closed access)Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique that can produce lasting changes in excitability and activity in cortical regions underneath the stimulation coil (local effect), but also within functionally connected cortical or subcortical regions (remote effects). Since the clinical presentation of Parkinson's disease (PD) is related to abnormal neuronal activity within the basal ganglia and cortical regions, including the primary motor cortex, the premotor cortex and the prefrontal cortex, several studies have used rTMS to improve brain function in PD. Here, we review the studies that have investigated the possible therapeutic effects of rTMS on mood and motor function in PD patients. We highlight some methodological inconsistencies and problems, including the difficulty to define the most effective protocol for rTMS or to establish an appropriate placebo condition. We finally propose future directions of research that may help to improve the therapeutic efficacy of rTMS in PD
    corecore