209 research outputs found

    Stacking technology for a space constrained microsystem

    Get PDF

    iTETRIS: An Integrated Wireless and Traffic Platform for Real-Time Road Traffic Management Solutions

    Get PDF
    Wireless vehicular cooperative systems have been identified as an attractive solution to improve road traffic management, thereby contributing to the European goal of safer, cleaner, and more efficient and sustainable traffic solutions. V2V-V2I communication technologies can improve traffic management through real-time exchange of data among vehicles and with road infrastructure. It is also of great importance to investigate the adequate combination of V2V and V2I technologies to ensure the continuous and costefficient operation of traffic management solutions based on wireless vehicular cooperative solutions. However, to adequately design and optimize these communication protocols and analyze the potential of wireless vehicular cooperative systems to improve road traffic management, adequate testbeds and field operational tests need to be conducted. Despite the potential of Field Operational Tests to get the first insights into the benefits and problems faced in the development of wireless vehicular cooperative systems, there is yet the need to evaluate in the long term and large dimension the true potential benefits of wireless vehicular cooperative systems to improve traffic efficiency. To this aim, iTETRIS is devoted to the development of advanced tools coupling traffic and wireless communication simulators

    Transport of Divalent Cations

    Full text link

    A novel method to perform morphological measurements on three-dimensional (3D) models of the calcaneus based on computed tomography (CT)-imaging

    Get PDF
    Background: While current preoperative and postoperative assessment of the fractured and surgically reconstructed calcaneus relies on computed tomography (CT)-imaging, there are no established methods to quantify calcaneus morphology on CT-images. This study aims to develop a semi-automated method for morphological measurements of the calcaneus on three-dimensional (3D) models derived from CT-imaging. Methods: Using CT data, 3D models were created from healthy, fractured, and surgically reconstructed calcanei. Böhler's angle (BA) and Critical angle of Gissane (CAG) were measured on conventional lateral radiographs and corresponding 3D CT reconstructions using a novel point-based method with semiautomatic landmark placement by three observers. Intraobserver and interobserver reliability scores were calculated using intra-class correlation coefficient (ICC). In addition, consensus among observers was calculated for a maximal allowable discrepancy of 5 and 10 degrees for both methods. Results: Imaging data from 119 feet were obtained (40 healthy, 39 fractured, 40 reconstructed). Semiautomated measurements on 3D models of BA and CAG showed excellent reliability (ICC: 0.87-1.00). The manual measurements on conventional radiographs had a poor-to-excellent reliability (ICC: 0.22-0.96). In addition, the percentage of consensus among observers was much higher for the 3D method when compared to conventional two-dimensional (2D) measurements. Conclusions: The proposed method enables reliable and reproducible quantification of calcaneus morphology in 3D models of healthy, fractured and reconstructed calcanei.</p

    Broadening the Berlin definition of ARDS to patients receiving high-flow nasal oxygen:an observational study in patients with acute hypoxemic respiratory failure due to COVID-19

    Get PDF
    BACKGROUND: High-flow nasal oxygen (HFNO) is increasingly used in patients with acute hypoxemic respiratory failure. It is uncertain whether a broadened Berlin definition of acute respiratory distress syndrome (ARDS), in which ARDS can be diagnosed in patients who are not receiving ventilation, results in similar groups of patients receiving HFNO as in patients receiving ventilation.METHODS: We applied a broadened definition of ARDS in a multicenter, observational study in adult critically ill patients with acute hypoxemic respiratory failure due to coronavirus disease 2019 (COVID-19), wherein the requirement for a minimal level of 5 cm H2O PEEP with ventilation is replaced by a minimal level of airflow rate with HFNO, and compared baseline characteristics and outcomes between patients receiving HFNO and patients receiving ventilation. The primary endpoint was ICU mortality. We also compared outcomes in risk for death groups using the PaO2/FiO2 cutoffs as used successfully in the original definition of ARDS. Secondary endpoints were hospital mortality; mortality on days 28 and 90; need for ventilation within 7 days in patients that started with HFNO; the number of days free from HFNO or ventilation; and ICU and hospital length of stay.RESULTS: Of 728 included patients, 229 patients started with HFNO and 499 patients with ventilation. All patients fulfilled the broadened Berlin definition of ARDS. Patients receiving HFNO had lower disease severity scores and lower PaO2/FiO2 than patients receiving ventilation. ICU mortality was lower in receiving HFNO (22.7 vs 35.6%; p = 0.001). Using PaO2/FiO2 cutoffs for mild, moderate and severe arterial hypoxemia created groups with an ICU mortality of 16.7%, 22.0%, and 23.5% (p = 0.906) versus 19.1%, 37.9% and 41.4% (p = 0.002), in patients receiving HFNO versus patients receiving ventilation, respectively.CONCLUSIONS: Using a broadened definition of ARDS may facilitate an earlier diagnosis of ARDS in patients receiving HFNO; however, ARDS patients receiving HFNO and ARDS patients receiving ventilation have distinct baseline characteristics and mortality rates.TRIAL REGISTRATION: The study is registered at ClinicalTrials.gov (identifier NCT04719182).</p

    A novel method to perform morphological measurements on three-dimensional (3D) models of the calcaneus based on computed tomography (CT)-imaging

    Get PDF
    Background: While current preoperative and postoperative assessment of the fractured and surgically reconstructed calcaneus relies on computed tomography (CT)-imaging, there are no established methods to quantify calcaneus morphology on CT-images. This study aims to develop a semi-automated method for morphological measurements of the calcaneus on three-dimensional (3D) models derived from CT-imaging. Methods: Using CT data, 3D models were created from healthy, fractured, and surgically reconstructed calcanei. Böhler's angle (BA) and Critical angle of Gissane (CAG) were measured on conventional lateral radiographs and corresponding 3D CT reconstructions using a novel point-based method with semiautomatic landmark placement by three observers. Intraobserver and interobserver reliability scores were calculated using intra-class correlation coefficient (ICC). In addition, consensus among observers was calculated for a maximal allowable discrepancy of 5 and 10 degrees for both methods. Results: Imaging data from 119 feet were obtained (40 healthy, 39 fractured, 40 reconstructed). Semiautomated measurements on 3D models of BA and CAG showed excellent reliability (ICC: 0.87-1.00). The manual measurements on conventional radiographs had a poor-to-excellent reliability (ICC: 0.22-0.96). In addition, the percentage of consensus among observers was much higher for the 3D method when compared to conventional two-dimensional (2D) measurements. Conclusions: The proposed method enables reliable and reproducible quantification of calcaneus morphology in 3D models of healthy, fractured and reconstructed calcanei.</p
    corecore