490 research outputs found

    Photo-desorption of H2O:CO:NH3 circumstellar ice analogs: Gas-phase enrichment

    Get PDF
    We study the photo-desorption occurring in H2_2O:CO:NH3_3 ice mixtures irradiated with monochromatic (550 and 900 eV) and broad band (250--1250 eV) soft X-rays generated at the National Synchrotron Radiation Research Center (Hsinchu, Taiwan). We detect many masses photo-desorbing, from atomic hydrogen (m/z = 1) to complex species with m/z = 69 (e.g., C3_3H3_3NO, C4_4H5_5O, C4_4H7_7N), supporting the enrichment of the gas phase. At low number of absorbed photons, substrate-mediated exciton-promoted desorption dominates the photo-desorption yield inducing the release of weakly bound (to the surface of the ice) species; as the number of weakly bound species declines, the photo-desorption yield decrease about one order of magnitude, until porosity effects, reducing the surface/volume ratio, produce a further drop of the yield. We derive an upper limit to the CO photo-desorption yield, that in our experiments varies from 1.4 to 0.007 molecule photon−1^{-1} in the range ∼1015−1020\sim 10^{15} - 10^{20}~absorbed photons cm−2^{-2}. We apply these findings to a protoplanetary disk model irradiated by a central T~Tauri star

    Accretion and photodesorption of CO ice as a function of the incident angle of deposition

    Get PDF
    Non-thermal desorption of inter- and circum-stellar ice mantles on dust grains, in particular ultraviolet photon-induced desorption, has gained importance in recent years. These processes may account for the observed gas phase abundances of molecules like CO toward cold interstellar clouds. Ice mantle growth results from gas molecules impinging on the dust from all directions and incidence angles. Nevertheless, the effect of the incident angle for deposition on ice photo-desorption rate has not been studied. This work explores the impact on the accretion and photodesorption rates of the incidence angle of CO gas molecules with the cold surface during deposition of a CO ice layer. Infrared spectroscopy monitored CO ice upon deposition at different angles, ultraviolet-irradiation, and subsequent warm-up. Vacuum-ultraviolet spectroscopy and a Ni-mesh measured the emission of the ultraviolet lamp. Molecules ejected from the ice to the gas during irradiation or warm-up were characterized by a quadrupole mass spectrometer. The photodesorption rate of CO ice deposited at 11 K and different incident angles was rather stable between 0 and 45∘^{\circ}. A maximum in the CO photodesorption rate appeared around 70∘^{\circ}-incidence deposition angle. The same deposition angle leads to the maximum surface area of water ice. Although this study of the surface area could not be performed for CO ice, the similar angle dependence in the photodesorption and the ice surface area suggests that they are closely related. Further evidence for a dependence of CO ice morphology on deposition angle is provided by thermal desorption of CO ice experiments

    Phonoritons as Hybridized Exciton-Photon-Phonon Excitations in a Monolayer h -BN Optical Cavity

    Get PDF
    A phonoriton is an elementary excitation that is predicted to emerge from hybridization between exciton, phonon, and photon. Besides the intriguing many-particle structure, phonoritons are of interest as they could serve as functional nodes in devices that utilize electronic, phononic, and photonic elements for energy conversion and thermal transport applications. Although phonoritons are predicted to emerge in an excitonic medium under intense electromagnetic wave irradiation, the stringent condition for their existence has eluded direct observation in solids. In particular, on-resonance, intense pumping schemes have been proposed, but excessive photoexcitation of carriers prevents optical detection. Here, we theoretically predict the appearance of phonoritonic features in monolayer hexagonal boron nitride (h-BN) embedded in an optical cavity. The coherent superposition nature of phonoriton states is evidenced by the hybridization of exciton-polariton branches with phonon replicas that is tunable by the cavity-matter coupling strength. This finding simultaneously provides an experimental pathway for observing the predicted phonoritons and opens a new avenue for tuning materials properties

    Measurement of Intrinsic Dirac Fermion Cooling on the Surface of the Topological Insulator Bi_2Se_3 Using Time-Resolved and Angle-Resolved Photoemission Spectroscopy

    Get PDF
    We perform time- and angle-resolved photoemission spectroscopy of a prototypical topological insulator (TI) Bi_2Se_3 to study the ultrafast dynamics of surface and bulk electrons after photoexcitation. By analyzing the evolution of surface states and bulk band spectra, we obtain their electronic temperature and chemical potential relaxation dynamics separately. These dynamics reveal strong phonon-assisted surface-bulk coupling at high lattice temperature and total suppression of inelastic scattering between the surface and the bulk at low lattice temperature. In this low temperature regime, the unique cooling of Dirac fermions in TI by acoustic phonons is manifested through a power law dependence of the surface temperature decay rate on carrier density

    The key parameters controlling the photodesorption yield in interstellar CO ice analogs: Influence of ice deposition temperature and thickness

    Full text link
    The overabundance of gas molecules in the coldest regions of space point to a non-thermal desorption process. Laboratory simulations show an efficient desorption of CO ice exposed to ultraviolet radiation, known as photodesorption, which decreases for increasing ice deposition temperature. However, the understanding of this abnormal phenomenon has remained elusive. In this work we show the same phenomenon, and in particular, a dramatic drop in the photodesorption yield is observed when the deposition temperature is 19 K and higher. Also the minimum ice thickness that accounts for a constant photodesorption yield of CO ice is deposition temperature dependent, an observation reported here for the first time. We propose that the key parameters that dominate the absorbed photon energy transfer in CO ice, and contribute to the measured photodesorption yields are the energy transfer length, single ice layer contributed desorption yield, and relative effective surface area. This set of parameters should be incorporated in astrophysical models that simulate photodesorption of the top CO-rich ice layer on icy dust populations with the size distribution which is ice thickness related.Comment: 8 pages, 4 figure

    Caractérisation phénotypique et génétique du riz africain (Oryza glaberrima Steud) phenotypic and genetic characterization of african rice (oryza glaberrima steud)

    Get PDF
    The agronomic interest of African rice and the morphological similarities with other species, arouse the necessity to characterize African rice for recovery and conservation. The present study aims primarily to characterize phenotypically and genetically African rice for better exploitation in aid of rice producers and consumers. Indeed, the phenotypic characteristics of the rice accessions examined have been determined in two agronomics systems (upland and irrigated) carried out about 235 accessions of African rice; and afterwards, genetic characterization using a specific marker has been carried. At the end of the analyzes, with regard to the phenotypic characters, 22 O.sativa or interspecific accessions differing morphologically on several descriptors were identified. Genetically, out of 19 profiles revealed on a 935-bp band, 14 confirmed the phenotypic results. This study shows that 221 out of 235 accessions are O. glaberrima rice. These results show that the accessions of different species analyzed were confused during the collection. They also seems to validate the possibility of hybridization between the two rice species in peasant environment. The accessions characterized strengthen the conservation effort of African rice. This collection can be used for future studies, particularly with perspective to selection and running African rice with the possibility to establish a genetic model to facilitate the transfer of useful genes from O.glaberrima to O.sativa, while controlling the reproductive barrier. Thus, it will be easy to better exploit the genetic diversity of the African species of cultivated rice
    • …
    corecore