694 research outputs found

    To a question on statement of a problem on modelling processes of structurization of foam concretes

    Get PDF
    Сидоренко Ю. В. К вопросу об постановке задачи о моделировании процессов структурообразования пенобетоно

    Evaluation of GBT-FPGA for timing and fast control in CBM experiment

    Get PDF
    Timing and Fast Control (TFC) system for the Compressed Baryonic Matter (CBM) experiment is being developed with focus on low and deterministic data transmission latency. This helps to minimize data corruption in the free-streaming Data Acquisition (DAQ) system during occasional data bursts caused by the expected beam intensity fluctuations. Proven in latency-optimized experimental data transport applications, the GBT-FPGA core is expected to positively contribute to the TFC system performance. In this work, the core has been integrated as the primary communication interface and its effect on transmission latency and quality of time distribution has been evaluated

    Reentrant superconductivity in superconductor/ferromagnetic-alloy bilayers

    Full text link
    We studied the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state establishing due to the proximity effect in superconducting Nb/Cu41Ni59 bilayers. Using a special wedge-type deposition technique, series of 20-35 samples could be fabricated by magnetron sputtering during one run. The layer thickness of only a few nanometers, the composition of the alloy, and the quality of interfaces were controlled by Rutherford backscattering spectrometry, high resolution transmission electron microscopy, and Auger spectroscopy. The magnetic properties of the ferromagnetic alloy layer were characterized with superconducting quantum interference device (SQUID) magnetometry. These studies yield precise information about the thickness, and demonstrate the homogeneity of the alloy composition and magnetic properties along the sample series. The dependencies of the critical temperature on the Nb and Cu41Ni59 layer thickness, Tc(dS) and Tc(dF), were investigated for constant thickness dF of the magnetic alloy layer and dS of the superconducting layer, respectively. All types of non-monotonic behaviors of Tc versus dF predicted by the theory could be realized experimentally: from reentrant superconducting behavior with a broad extinction region to a slight suppression of superconductivity with a shallow minimum. Even a double extinction of superconductivity was observed, giving evidence for the multiple reentrant behavior predicted by theory. All critical temperature curves were fitted with suitable sets of parameters. Then, Tc(dF) diagrams of a hypothetical F/S/F spin-switch core structure were calculated using these parameters. Finally, superconducting spin-switch fabrication issues are discussed in detail in view of the achieved results.Comment: 34 pages, 9 figure

    ON THE ISSUE OF PLANNING SOWING AGRICULTURAL CROPS WITH THE MINIMUM RISK UNDER THE PRESENCE OF VARIOUS AGROCLIMATIC CONDITIONS

    Get PDF
    The present paper deals with one problem of quantitative controlling the seeding of the sown area by agricultural crops in different agroclimatic conditions. The considered problem is studied from the standpoint of three strategies: from the seeding planning perspective aiming at minimal risk associated with possible unfavourable agroclimatic conditions (a probabilistic approach is used); from the perspective of obtaining the maximum crops sales profit (a deterministic approach is used); from the perspective of obtaining the maximum crops harvest. For the considered problem, mathematical models are constructed (one probabilistic model and two deterministic models, respectively), their analytical solutions are found, and then, using a specific example, the application of the constructed and solved mathematical models is illustrated as well as the obtained numerical results are analysed.

    Prototype design of a timing and fast control system in the CBM experiment

    Get PDF
    The Compressed Baryonic Matter (CBM) experiment is designed to handle interaction rates of up to 10 MHz and up to 1 TB/s of raw data generated. With triggerless streaming data acquisition in the experiment and beam intensity fluctuations, it is expected that occasional data bursts will surpass bandwidth capabilities of the Data Acquisition System (DAQ) system. In order to preserve integrity of event data, the bandwidth of DAQ must be throttled in an organised way with minimum information loss. The Timing and Fast Control (TFC) system provides a latency-optimised datapath for throttling commands and distributes a system clock together with a global timestamp. This paper describes a prototype design of the system with focus on synchronisation and its evaluation
    corecore