18 research outputs found

    Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder: a resting state study of attention, default mode and salience network connectivity

    Get PDF
    Deficits in task-related attentional engagement in attention-deficit/hyperactivity disorder (ADHD) have been hypothesized to be due to altered interrelationships between attention, default mode and salience networks. We examined the intrinsic connectivity during rest within and between these networks. Six minutes resting state scans were obtained. Using a network-based approach, connectivity within and between the dorsal and ventral attention, the default mode and the salience networks was compared between the ADHD and control group. The ADHD group displayed hyperconnectivity between the two attention networks and within the default mode and ventral attention network. The salience network was hypoconnected to the dorsal attention network. There were trends towards hyperconnectivity within the dorsal attention network and between the salience and ventral attention network in ADHD. Connectivity within and between other networks was unrelated to ADHD. Our findings highlight the altered connectivity within and between attention networks, and between them and the salience network in ADHD. One hypothesis to be tested in future studies is that individuals with ADHD are affected by an imbalance between ventral and dorsal attention systems with the former playing a dominant role during task engagement making individuals with ADHD highly susceptible to distraction by salient task-irrelevant stimuli

    Altered proactive control in adults with ADHD : evidence from event-related potentials during cued task switching

    Get PDF
    Cognitive control has two distinct modes - proactive and reactive (Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 105-112). ADHD has been associated with cognitive control impairments. However, studies have mainly focused on reactive control and not proactive control. Here we investigated neural correlates of proactive and reactive cognitive control in a group of adults with ADHD versus healthy controls by employing a cued switching task while cue informativeness was manipulated and EEG recorded. On the performance level, only a trend to generally slower responding was found in the ADHD group. Cue-locked analyses revealed an attenuated informative-positivity - a differential component appearing when contrasting informative with non-informative alerting cues - and potentially altered lateralisation of the switch-positivity - evident in the contrast between switch and repeat trials for informative cues - in ADHD. No difference in target-locked activity was found. Our results indicate altered proactive rather than reactive control in adults with ADHD, evidenced by less use of cued advance information and abnormal preparatory processes for upcoming tasks

    Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: preserved global – disturbed local network organization

    No full text
    Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics — small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits

    Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global – disturbed local network organization

    No full text
    Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics — small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits

    Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder: a resting-state study of attention, default mode and salience network connectivity

    No full text
    Deficits in task-related attentional engagement in attention-deficit/hyperactivity disorder (ADHD) have been hypothesised to be due to altered interrelationships between attention, default mode and salience networks. We examined the intrinsic connectivity during rest within and between these networks. Six-minute resting-state scans were obtained. Using a network-based approach, connectivity within and between the dorsal and ventral attention, the default mode and the salience networks was compared between the ADHD and control group. The ADHD group displayed hyperconnectivity between the two attention networks and within the default mode and ventral attention network. The salience network was hypoconnected to the dorsal attention network. There were trends towards hyperconnectivity within the dorsal attention network and between the salience and ventral attention network in ADHD. Connectivity within and between other networks was unrelated to ADHD. Our findings highlight the altered connectivity within and between attention networks, and between them and the salience network in ADHD. One hypothesis to be tested in future studies is that individuals with ADHD are affected by an imbalance between ventral and dorsal attention systems with the former playing a dominant role during task engagement, making individuals with ADHD highly susceptible to distraction by salient task-irrelevant stimuli
    corecore