357 research outputs found
Evidence for two distinct energy scales in the Raman spectra of YBa2(CuNi)O6.95
We report low energy electronic Raman scattering from Ni-substituted
YBa2Cu3O6.95 single crystals with Tc ranging from 92.5 K to 78 K. The fully
symmetrical A1g channel and the B1g channel which is sensitive to the dx2-y2
gap maximum have been explored. The energy of the B1g pair-breaking peak
remains constant under Ni doping while the energy of the A1g peak scales with
Tc (EA1g/Tc=5). Our data show that the A1g peak tracks the magnetic resonance
peak observed in inelastic neutron scattering yielding a key explanation to the
long-standing problem of the origin the A1g peak.Comment: 10 pages, 4 figures and 1 tabl
Microscopic origin of local moments in a zinc-doped high- superconductor
The formation of a local moment around a zinc impurity in the high-
cuprate superconductors is studied within the framework of the bosonic
resonating-valence-bond (RVB) description of the model. A topological
origin of the local moment has been shown based on the phase string effect in
the bosonic RVB theory. It is found that such an moment distributes
near the zinc in a form of staggered magnetic moments at the copper sites. The
corresponding magnetic properties, including NMR spin relaxation rate, uniform
spin susceptibility, and dynamic spin susceptibility, etc., calculated based on
the theory, are consistent with the experimental measurements. Our work
suggests that the zinc substitution in the cuprates provide an important
experimental evidence for the RVB nature of local physics in the original (zinc
free) state.Comment: The topological reason of local moment formation is given. One figure
is adde
Magnetic Resonant excitations in High-{} superconductors
The observation of an unusual spin resonant excitation in the superconducting
state of various High-Tc ~copper oxides by inelastic neutron scattering
measurements is reviewed. This magnetic mode % (that does not exist in
conventional superconductors) is discussed in light of a few theoretical models
and likely corresponds to a spin-1 collective mode.Comment: 4 figures, Proceedings conference MSM'03 (september 2003) in Monastir
(Tunisia) to be published in Phys. Stat. Solid
Spin reorientation in Na-doped BaFeAs studied by neutron diffraction
We have studied the magnetic ordering in Na doped BaFeAs by
unpolarized and polarized neutron diffraction using single crystals. Unlike
previously studied FeAs-based compounds that magnetically order,
BaNaFeAs exhibits two successive magnetic transitions: For
x=0.35 upon cooling magnetic order occurs at 70\ K with in-plane magnetic
moments being arranged as in pure or Ni, Co and K-doped BaFeAs samples.
At a temperature of 46\ K a second phase transition occurs, which the
single-crystal neutron diffraction experiments can unambiguously identify as a
spin reorientation. At low temperatures, the ordered magnetic moments in
BaNaFeAs point along the direction. Magnetic
correlations in these materials cannot be considered as Ising like, and
spin-orbit coupling must be included in a quantitative theory.Comment: 5 pages, 4 figure
Field-induced paramagnons at the metamagnetic transition in Ca1.8Sr0.2RuO4
The magnetic excitations in Ca1.8Sr0.2RuO4 were studied across the
metamagnetic transition and as a function of temperature using inelastic
neutron scattering. At low temperature and low magnetic field the magnetic
response is dominated by a complex superposition of incommensurate
antiferromagnetic fluctuations. Upon increasing the magnetic field across the
metamagnetic ransition, paramagnon and finally well-defined magnon scattering
is induced, partially suppressing the incommensurate signals. The high-field
phase in Ca1.8Sr0.2RuO4 has, therefore, to be considered as an intrinsically
ferromagnetic state stabilized by the magnetic field
Characterization of the Intra-Unit-Cell magnetic order in Bi2Sr2CaCu2O8+d
As in YBa2Cu3O6+x and HgBa2CuO8+d, the pseudo-gap state in Bi2Sr2CaCu2O8+d is
characterized by the existence of an intra-unit-cell magnetic order revealed by
polarized neutron scattering technique. We report here a supplementary set of
polarized neutron scattering measurements for which the direction of the
magnetic moment is determined and the magnetic intensity is calibrated in
absolute units. The new data allow a close comparison between bilayer systems
YBa2Cu3O6+x and Bi2Sr2CaCu2O8+d and rise important questions concerning the
range of the magnetic correlations and the role of disorder around optimal
doping.Comment: 12 pages, 8 figures, submitted to physical review
- …