28 research outputs found

    Vascular Remodeling in Health and Disease

    Get PDF
    The term vascular remodeling is commonly used to define the structural changes in blood vessel geometry that occur in response to long-term physiologic alterations in blood flow or in response to vessel wall injury brought about by trauma or underlying cardiovascular diseases.1, 2, 3, 4 The process of remodeling, which begins as an adaptive response to long-term hemodynamic alterations such as elevated shear stress or increased intravascular pressure, may eventually become maladaptive, leading to impaired vascular function. The vascular endothelium, owing to its location lining the lumen of blood vessels, plays a pivotal role in regulation of all aspects of vascular function and homeostasis.5 Thus, not surprisingly, endothelial dysfunction has been recognized as the harbinger of all major cardiovascular diseases such as hypertension, atherosclerosis, and diabetes.6, 7, 8 The endothelium elaborates a variety of substances that influence vascular tone and protect the vessel wall against inflammatory cell adhesion, thrombus formation, and vascular cell proliferation.8, 9, 10 Among the primary biologic mediators emanating from the endothelium is nitric oxide (NO) and the arachidonic acid metabolite prostacyclin [prostaglandin I2 (PGI2)], which exert powerful vasodilatory, antiadhesive, and antiproliferative effects in the vessel wall

    Protective Effect of Melatonin Against Malathion Induced Alterations in Antioxidant Defense System and Morphology of Erythrocytes in Wistar Rats

    No full text
    Malathion intoxication has been shown to produce oxidative stress due to the generation of free radicals and alter the antioxidant defense system in erythrocytes. Previous studies have shown the ameliorative role melatonin against oxidative stress induced by generation of free radicals. Present study was designed to investigate the protective effect of melatonin against malathion induced oxidative stress. For this purpose, male Wistar rats were randomly divided into four groups: Control; Melatonin (10mg/Kg body weight) group; Malathion (250mg/Kg body weight) treated group; Malathion + Melatonin treated group. Animals were administered an acute dose of malathion orally. The result of this study shows that in vivo administration of malathion caused inhibition in AChE activity in erythrocytes. Malathion intoxication also significantly increased the oxidative damage as evidenced by increased level of LPO and GSH content. The Inhibition of GSH level and increased lipid peroxidation in erythrocytes was relieved in malathion + melatonin group. Enhanced activities of SOD, CAT, GR and GPx were observed in erythrocytes of malathion treated rats as compared to control group. Moreover, melatonin supplementation in malathion treated rats maintain normal level of antioxidant enzymes as compared to malathion treated rats which indicates that melatonin provide protection against malathion-induced oxidative stress in erythrocytes. No significant change in the membrane bound enzymes such as Na+/K+-ATPase, Mg2+-ATPase and Ca2+-ATPase was observed in malathion intoxicated rats. Findings of scanning electron micrographs of erythrocytes revealed that both the malathion treated and malathion+melatonin treated groups exhibited morphological changes in erythrocytes. However, concomitant melatonin supplementation normalized the morphological alterations in erythrocytes induced by malathion toxicity. In conclusion, melatonin supplementation may ameliorate malathion-induced oxidative imbalance by enhancing the glutathione level, reducing lipid peroxidation and normalizing antioxidant enzyme activities in erythrocytes

    Protective Effect of Melatonin Against Malathion Induced Alterations in Antioxidant Defense System and Morphology of Erythrocytes in Wistar Rats

    No full text
    Malathion intoxication has been shown to produce oxidative stress due to the generation of free radicals and alter the antioxidant defense system in erythrocytes. Previous studies have shown the ameliorative role melatonin against oxidative stress induced by generation of free radicals. Present study was designed to investigate the protective effect of melatonin against malathion induced oxidative stress. For this purpose, male Wistar rats were randomly divided into four groups: Control; Melatonin (10mg/Kg body weight) group; Malathion (250mg/Kg body weight) treated group; Malathion + Melatonin treated group. Animals were administered an acute dose of malathion orally. The result of this study shows that in vivo administration of malathion caused inhibition in AChE activity in erythrocytes. Malathion intoxication also significantly increased the oxidative damage as evidenced by increased level of LPO and GSH content. The Inhibition of GSH level and increased lipid peroxidation in erythrocytes was relieved in malathion + melatonin group. Enhanced activities of SOD, CAT, GR and GPx were observed in erythrocytes of malathion treated rats as compared to control group. Moreover, melatonin supplementation in malathion treated rats maintain normal level of antioxidant enzymes as compared to malathion treated rats which indicates that melatonin provide protection against malathion-induced oxidative stress in erythrocytes. No significant change in the membrane bound enzymes such as Na+/K+-ATPase, Mg2+-ATPase and Ca2+-ATPase was observed in malathion intoxicated rats. Findings of scanning electron micrographs of erythrocytes revealed that both the malathion treated and malathion+melatonin treated groups exhibited morphological changes in erythrocytes. However, concomitant melatonin supplementation normalized the morphological alterations in erythrocytes induced by malathion toxicity. In conclusion, melatonin supplementation may ameliorate malathion-induced oxidative imbalance by enhancing the glutathione level, reducing lipid peroxidation and normalizing antioxidant enzyme activities in erythrocytes

    The Punjab Preservation of Subsoil Water Act: a regulatory mechanism for saving groundwater

    No full text
    In Rao, M. S.; Khobragade, S.; Kumar, B.; Singh, R. D. (Eds.). Proceedings of the Workshop on Water Availability and Management in Punjab (WAMIP-2010), Chandigarh, India, 13-15 December 2010. Roorkee, India: National Institute of HydrologyGroundwater resources, believed to have played an important role in Green Revolution induced agricultural productivity rise in India, is under serious threat due to overdraft. The unregulated exploitation of this limited resource had brought Indian Punjab into a state of acute water crisis. Homogenized cropping followed in the state, with water guzzling rice being the highly favoured crop in kharif, is the most to blame for this resource crisis. The plunging water levels in the state led the state Government to regulate groundwater use byseveral district and indirect measures. The Punjab Preservation of Sub-soil Water Act-2009 is such an effort to conserve groundwater resource by mandatory delay in the transplanting paddy beyond 10th June to escape periods of very evapotranspiration demands. The present paper investigates the potential of the act in bringing about anticipated real water savings of groundwater. It also looks at the impact of this regulatory framework on savings in agricultural electricity consumption in the state

    Not Available

    No full text
    Not AvailableSustaining soil and land quality under intensive land use and fast economic development is a major challenge for improving crop productivity in the developing world. Assessment of soil and land quality indicators is necessary to evaluate the degradation status and changing trends of different land use and management interventions. During the last four decades, the Indo-Gangetic Plains (IGP) which covers an area of about 52.01 m ha has been the major food producing region of the country. However at present, the yield of crops in IGP has stagnated; one of the major reasons being deterioration of soil and land quality. The present article deals with the estimation of soil and land quality indicators of IGP, so that, proper soil and land management measures can be taken up to restore and improve the soil health. Use of principal component analysis is detailed to derive the minimum dataset or indicators for soil quality. The article also describes spatial distribution of soil and land quality with respect to major crops of IGP.Not Availabl
    corecore