614 research outputs found
Upper Bounds on the Capacity of Binary Channels with Causal Adversaries
In this work we consider the communication of information in the presence of
a causal adversarial jammer. In the setting under study, a sender wishes to
communicate a message to a receiver by transmitting a codeword
bit-by-bit over a communication channel. The sender and the receiver do not
share common randomness. The adversarial jammer can view the transmitted bits
one at a time, and can change up to a -fraction of them. However, the
decisions of the jammer must be made in a causal manner. Namely, for each bit
the jammer's decision on whether to corrupt it or not must depend only on
for . This is in contrast to the "classical" adversarial
jamming situations in which the jammer has no knowledge of , or
knows completely. In this work, we present upper bounds (that
hold under both the average and maximal probability of error criteria) on the
capacity which hold for both deterministic and stochastic encoding schemes.Comment: To appear in the IEEE Transactions on Information Theory; shortened
version appeared at ISIT 201
The benefit of a 1-bit jump-start, and the necessity of stochastic encoding, in jamming channels
We consider the problem of communicating a message in the presence of a
malicious jamming adversary (Calvin), who can erase an arbitrary set of up to
bits, out of transmitted bits . The capacity of such
a channel when Calvin is exactly causal, i.e. Calvin's decision of whether or
not to erase bit depends on his observations was
recently characterized to be . In this work we show two (perhaps)
surprising phenomena. Firstly, we demonstrate via a novel code construction
that if Calvin is delayed by even a single bit, i.e. Calvin's decision of
whether or not to erase bit depends only on (and
is independent of the "current bit" ) then the capacity increases to
when the encoder is allowed to be stochastic. Secondly, we show via a novel
jamming strategy for Calvin that, in the single-bit-delay setting, if the
encoding is deterministic (i.e. the transmitted codeword is a deterministic
function of the message ) then no rate asymptotically larger than is
possible with vanishing probability of error, hence stochastic encoding (using
private randomness at the encoder) is essential to achieve the capacity of
against a one-bit-delayed Calvin.Comment: 21 pages, 4 figures, extended draft of submission to ISIT 201
A Case of Cutaneous Plasmablastic Lymphoma in HIV/AIDS with Disseminated Cryptococcus
We present a case of a patient with HIV/AIDS who presented with a tender left lower extremity cutaneous mass over a site of previous cryptococcal infection and was found to have plasmablastic lymphoma (PBL). The incidence of PBL is estimated to account for less than 5% of all cases of non-Hodgkin lymphoma (NHL) in HIV-positive individuals. In fact, there were only two reports of extraoral PBL at the time of a 2003 review. PBL in HIV-positive individuals is an aggressive malignancy that tends to occur in middle-aged males with low CD4 counts, high viral loads, and chronic HIV infection. The definitive diagnosis can be made with biopsy which typically shows malignant lymphoid cells that stain positive for plasma cell markers and negative for B-cell markers. The most common treatment is chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-like regimens, but the overall survival rate is poor despite its relative responsiveness to chemotherapy. This case highlights the challenges that remain in improving clinical outcomes, the importance of antiretroviral therapy and HIV disease control, and a potential association between a chronic inflammatory state caused by disseminated Cryptococcus and tumorigenesis in individuals with PBL
Application of the codon-shuffling method : Synthesis and selection of de novo proteins as antibacterials
Library-based methods of non-rational and part-rational designed de novo peptides are worthy beacons in the search for bioactive peptides and proteins of medicinal importance. In this report, we have used a recently developed directed evolution method called "codon shuffling" for the synthesis and selection of bioactive proteins. The selection of such proteins was based on the creation of an inducible library of "codon-shuffled" genes that are constructed from the ligation-based assembly of judiciously designed hexamer DNA duplexes called dicodons. Upon induction with isopropyl 1-thio-beta-D-galactopyranoside, some library members were found to express dicodon-incorporated proteins. Because of this, the host cells, in our case Escherichia coli, were unable to grow any further. The bactereostatic/lytic nature of the dicodon proteins was monitored by growth curves as well as by zone clearance studies. Transmission electron microscopy of the affected cells illustrated the extent of cell damage. The proteins themselves were overexpressed as fusion partners and subsequently purified to homogeneity. One such purified protein was found to strongly bind heparin, an indication that the interaction of the de novo proteins may be with the nucleic acids of the host cell, much like many of the naturally occurring antibacterial peptides, e.g. Buforin. Therefore, our approach may help in generating a multitude of finely tuned antibacterial proteins that can potentially be regarded as lead compounds once the method is extended to pathogenic hosts, such as Mycobacteria, for example
AMuSE: Adaptive Multimodal Analysis for Speaker Emotion Recognition in Group Conversations
Analyzing individual emotions during group conversation is crucial in
developing intelligent agents capable of natural human-machine interaction.
While reliable emotion recognition techniques depend on different modalities
(text, audio, video), the inherent heterogeneity between these modalities and
the dynamic cross-modal interactions influenced by an individual's unique
behavioral patterns make the task of emotion recognition very challenging. This
difficulty is compounded in group settings, where the emotion and its temporal
evolution are not only influenced by the individual but also by external
contexts like audience reaction and context of the ongoing conversation. To
meet this challenge, we propose a Multimodal Attention Network that captures
cross-modal interactions at various levels of spatial abstraction by jointly
learning its interactive bunch of mode-specific Peripheral and Central
networks. The proposed MAN injects cross-modal attention via its Peripheral
key-value pairs within each layer of a mode-specific Central query network. The
resulting cross-attended mode-specific descriptors are then combined using an
Adaptive Fusion technique that enables the model to integrate the
discriminative and complementary mode-specific data patterns within an
instance-specific multimodal descriptor. Given a dialogue represented by a
sequence of utterances, the proposed AMuSE model condenses both spatial and
temporal features into two dense descriptors: speaker-level and
utterance-level. This helps not only in delivering better classification
performance (3-5% improvement in Weighted-F1 and 5-7% improvement in Accuracy)
in large-scale public datasets but also helps the users in understanding the
reasoning behind each emotion prediction made by the model via its Multimodal
Explainability Visualization module
COLECCIÓN ANTONIO GONZÁLEZ. CRONISTA OFICIAL DE TELDE [Material gráfico]
Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201
Case Report A Case of Cutaneous Plasmablastic Lymphoma in HIV/AIDS with Disseminated Cryptococcus
We present a case of a patient with HIV/AIDS who presented with a tender left lower extremity cutaneous mass over a site of previous cryptococcal infection and was found to have plasmablastic lymphoma (PBL). The incidence of PBL is estimated to account for less than 5% of all cases of non-Hodgkin lymphoma (NHL) in HIV-positive individuals. In fact, there were only two reports of extraoral PBL at the time of a 2003 review. PBL in HIV-positive individuals is an aggressive malignancy that tends to occur in middle-aged males with low CD4 counts, high viral loads, and chronic HIV infection. The definitive diagnosis can be made with biopsy which typically shows malignant lymphoid cells that stain positive for plasma cell markers and negative for B-cell markers. The most common treatment is chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) or CHOP-like regimens, but the overall survival rate is poor despite its relative responsiveness to chemotherapy. This case highlights the challenges that remain in improving clinical outcomes, the importance of antiretroviral therapy and HIV disease control, and a potential association between a chronic inflammatory state caused by disseminated Cryptococcus and tumorigenesis in individuals with PBL
Development of a water-based cooling system for the Muon Chamber detector system of the CBM experiment
A water-based cooling system is being investigated to meet the cooling
requirement of the Gas Electron Multiplier (GEM) based Muon Chamber (MuCh)
detector system of the Compressed Baryonic Matter (CBM) experiment at GSI,
Germany. The system is based on circulating cold water through the channels
inside an aluminium plate. The aluminium plate is attached to a GEM chamber. A
feasibility study is conducted on one small and two real-size prototype cooling
plates. A microcontroller based unit has been built and integrated into the
system to achieve automatic control and monitoring of temperature on plate
surface. The real-size prototypes have been used in a test beam experiment at
the CERN SPS (Super Proton Synchrotron) with the lead beam on a lead target. A
setup using three prototype modules has been prepared in the lab for testing in
a simulated real life environment. This paper discusses the working principle,
mechanical design, fabrication, and test results of the cooling prototypes in
detail.Comment: 8 pages, 12 figures, 2 table
- …