388 research outputs found

    MHC-linked and un-linked class I genes in the wallaby

    Get PDF
    Background: MHC class I antigens are encoded by a rapidly evolving gene family comprising classical and non-classical genes that are found in all vertebrates and involved in diverse immune functions. However, there is a fundamental difference between the organization of class I genes in mammals and non-mammals. Non-mammals have a single classical gene responsible for antigen presentation, which is linked to the antigen processing genes, including TAP. This organization allows co-evolution of advantageous class Ia/ TAP haplotypes. In contrast, mammals have multiple classical genes within the MHC, which are separated from the antigen processing genes by class III genes. It has been hypothesized that separation of classical class I genes from antigen processing genes in mammals allowed them to duplicate. We investigated this hypothesis by characterizing the class I genes of the tammar wallaby, a model marsupial that has a novel MHC organization, with class I genes located within the MHC and 10 other chromosomal locations. Results: Sequence analysis of 14 BACs containing 15 class I genes revealed that nine class I genes, including one to three classical class I, are not linked to the MHC but are scattered throughout the genome. Kangaroo Endogenous Retroviruses (KERVs) were identified flanking the MHC un-linked class I. The wallaby MHC contains four non-classical class I, interspersed with antigen processing genes. Clear orthologs of non-classical class I are conserved in distant marsupial lineages. Conclusion: We demonstrate that classical class I genes are not linked to antigen processing genes in the wallaby and provide evidence that retroviral elements were involved in their movement. The presence of retroviral elements most likely facilitated the formation of recombination hotspots and subsequent diversification of class I genes. The classical class I have moved away from antigen processing genes in eutherian mammals and the wallaby independently, but both lineages appear to have benefited from this loss of linkage by increasing the number of classical genes, perhaps enabling response to a wider range of pathogens. The discovery of non-classical orthologs between distantly related marsupial species is unusual for the rapidly evolving class I genes and may indicate an important marsupial specific function

    The tammar wallaby major histocompatibility complex shows evidence of past genomic instability

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The major histocompatibility complex (MHC) is a group of genes with a variety of roles in the innate and adaptive immune responses. MHC genes form a genetically linked cluster in eutherian mammals, an organization that is thought to confer functional and evolutionary advantages to the immune system. The tammar wallaby (Macropus eugenii), an Australian marsupial, provides a unique model for understanding MHC gene evolution, as many of its antigen presenting genes are not linked to the MHC, but are scattered around the genome. Results Here we describe the 'core' tammar wallaby MHC region on chromosome 2q by ordering and sequencing 33 BAC clones, covering over 4.5 MB and containing 129 genes. When compared to the MHC region of the South American opossum, eutherian mammals and non-mammals, the wallaby MHC has a novel gene organization. The wallaby has undergone an expansion of MHC class II genes, which are separated into two clusters by the class III genes. The antigen processing genes have undergone duplication, resulting in two copies of TAP1 and three copies of TAP2. Notably, Kangaroo Endogenous Retroviral Elements are present within the region and may have contributed to the genomic instability. Conclusions The wallaby MHC has been extensively remodeled since the American and Australian marsupials last shared a common ancestor. The instability is characterized by the movement of antigen presenting genes away from the core MHC, most likely via the presence and activity of retroviral elements. We propose that the movement of class II genes away from the ancestral class II region has allowed this gene family to expand and diversify in the wallaby. The duplication of TAP genes in the wallaby MHC makes this species a unique model organism for studying the relationship between MHC gene organization and function.Peer Reviewe

    Training the next generation of clinical researchers: Evaluation of a graduate podiatrist research internship in rheumatology

    Get PDF
    Background: The aim of this study was to evaluate the effectiveness of the Arthritis Research UK funded graduate internship scheme for podiatrists and to explore the experiences of interns and mentors. Methods: Nine new graduates completed the internship programme (July 2006-June 2010); six interns and two mentors participated in this study. The study was conducted in three phases. Phase 1: quantitative survey of career and research outcomes for interns. Phase 2 and 3: qualitative asynchronous interviews through email to explore the experiences of interns and mentors. Interpretive phenomenological analysis (IPA) of coded transcripts identified recurring themes. Results: Research outputs included ten peer reviewed publications with authorial contributions from interns, 23 conference abstract presentations and one subsequent 'Jewel in the Crown' award at the British Society for Rheumatology Conference. Career progression includes two National Institute for Health research (NIHR) PhD fellowships, two Arthritis Research UK PhD fellowships, one NIHR Master of Research fellowship and one specialist rheumatology clinical post. Two interns are members of NIHR and professional body committees. Seven important themes arose from the qualitative phases: perceptions of the internship pre-application; internship values; maximising personal and professional development; psychosocial components of the internship; the role of mentoring and networking; access to research career pathways; perceptions of future developments for the internship programme. The role of mentorship and the peer support network have had benefits that have persisted beyond the formal period of the scheme. Conclusions: The internship model appears to have been perceived to have been valuable to the interns' careers and may have contributed significantly to the broader building of capacity in clinical research in foot and ankle rheumatology. We believe the model has potential to be transferable across health disciplines and on national and international scales

    Measurement of the recoil polarization in the p (\vec e, e' \vec p) pi^0 reaction at the \Delta(1232) resonance

    Full text link
    The recoil proton polarization has been measured in the p (\vec e,e'\vec p) pi^0 reaction in parallel kinematics around W = 1232 MeV, Q^2 = 0.121 (GeV/c)^2 and epsilon = 0.718 using the polarized c.w. electron beam of the Mainz Microtron. Due to the spin precession in a magnetic spectrometer, all three proton polarization components P_x/P_e = (-11.4 \pm 1.3 \pm 1.4) %, P_y = (-43.1 \pm 1.3 \pm 2.2) %, and P_z/P_e = (56.2 \pm 1.5 \pm 2.6) % could be measured simultaneously. The Coulomb quadrupole to magnetic dipole ratio CMR = (-6.4\pm 0.7_{stat}\pm 0.8_{syst}) % was determined from P_x in the framework of the Mainz Unitary Isobar Model. The consistency among the reduced polarizations and the extraction of the ratio of longitudinal to transverse response is discussed.Comment: 5 pages LaTeX, 1 table, 2 eps figure

    Testing the theory of immune selection in cancers that break the rules of transplantation

    Get PDF
    Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance
    corecore