13 research outputs found
Cultivating a greener future:Exploiting trichoderma derived secondary metabolites for fusarium wilt management in peas
This study aimed to identify efficient Trichoderma isolate(s) for the management of Fusarium wilt in peas. Four different pea germplasms (Sarsabz, Pea-09, Meteor and Supreme) were evaluated for resistance against Fusarium oxysporum in pot assay. Resistant germplasm exhibits a varying range of disease severity (23%) and percent disease index (21%), whereas susceptible and highly susceptible germplasm exhibit maximum disease severity (44–79%) and percent disease index (47–82%). The susceptible germplasm Meteor was selected for in vivo experiment. Five different Trichoderma spp. (Trichoderma koningii, T. hamatum, T. longibrachiatum, T. viride, and T. harzianum) were screened for the production of hydrolytic extracellular enzymes under in vitro. In-vitro biocontrol potential of Trichoderma spp. was assayed by percentage inhibition of dry mass of Fusarium oxysporum pisi (FOP) with Trichoderma spp. metabolite filtrate concentrations. Maximum growth inhibition was observed by T. harzianum (50–89%). T. harzianum metabolites in filtrate conc. (40%, 50%, and 60%) exhibited maximum reduction in biomass and were thus used for in vivo management of the disease. The pot experiment for in-vivo management also confirmed the maximum inhibition of FOP by T. harzianum metabolites filtrate at 60% by reducing disease parameters and enhancing growth, yield, and physiochemical and stress markers. Trichoderma strains led to an increase in chlorophyll and carotenoids (34-26%), Total phenolic 55%, Total protein content 60%, Total Flavonoid content 36%, and the increasing order of enzyme activities were as follows: CAT > POX > PPO > PAL in all treatments. These strains demonstrate excellent bio-control of Fusarium wilt in pea via induction of defense-related enzymes. The present work will help use Trichoderma species in disease management programme as an effective biocontrol agent against plant pathogens
Antioxidant, Cytotoxic, and Antimicrobial Potential of Silver Nanoparticles Synthesized using Tradescantia pallida Extract
Silver nanoparticles have received much attention, due to their wide range of biological applications as an alternative therapy for disease conditions utilizing the nanobiotechnology domain for synthesis. The current study was performed to examine the antioxidant, anticancer, antibacterial, and antifungal potential of biosynthesized silver nanoparticles (TpAgNPs) using plant extract. The TpAgNPs were produced by reacting the Tradescantia pallida extract and AgNO3 solution in nine various concentration ratios subjected to bioactivities profiling. According to the current findings, plant extract comprising phenolics, flavonoids, and especially anthocyanins played a critical role in the production of TpAgNPs. UV–visible spectroscopy also validated the TpAgNP formation in the peak range of 401–441 nm. Further, the silver ion stabilization by phytochemicals, face-centered cubic structure, crystal size, and spherical morphology of TpAgNPs were analyzed by FTIR, XRD, and SEM. Among all TpAgNPs, the biosynthesized TpAgNP6 with a medium concentration ratio (5:10) and the plant extract had effective antioxidant potentials of 77.2 ± 1.0% and 45.1 ± 0.5% free radical scavenging activity, respectively. The cytotoxic activity of TpAgNP6 in comparison to plant extract for the rhabdomyosarcoma cell line was significantly the lowest with IC50 values of 81.5 ± 1.9 and 90.59 ± 1.6 μg/ml and cell viability % of 24.3 ± 1.62 and 27.4 ± 1.05, respectively. The antibacterial and antifungal results of TpAgNPs revealed significant improvement in comparison to plant extract, i.e., minimum inhibition concentration (MIC) 64 μg/ml against Gram-negative Pseudomonas aeruginosa while, in the case of antifungal assay, TpAgNP6 was active against Candida parapsilosis. These TpAgNPs play a crucial role in determining the therapeutic potential of T. pallida due to their biological efficacy
Comparative arsenic tolerance and accumulation potential between wild Tagetes patula and Tagetes minuta
Arsenic (As) is a bioactive metalloid that is highly toxic to humans, animals, and plants. Environmental contamination
of As especially in groundwater increases due to natural and anthropogenic activities. The present study was performed to
evaluate the potential of wild Tagetes species for the phytoremediation of As contaminated soil/water. This comparative
research aims to analyze As accumulation and tolerance in two wild species of Tagetes, T. minuta and T. patula. The
20 days old seedlings were grown hydroponically and exposed to the different concentrations of As, 0, 50, 150, and
300 µM As2
O3
for 1-, 4- and 7- days intervals.Effect of As stress was measured on the rate of seed germination, growth
parameters like fresh and dry biomass weight, root/shoot length, chlorophyll contents and As contents in root and
shoot in both Tagetes species. Increasing concentration of As restricts the growth activity of T. minuta with toxicity
symptoms on leaves such as chlorosis. Accumulation of As in the shoot was significantly (p ≤ 0.01) high (634 µg g-1 DW)
in T. patula as compared to T. minuta (397 µg g-1 DW) at 300 µM As2
O3
. Both Tagetes species exhibited high variation
for As tolerance parameters as well as for As accumulation patterns. Comparatively good tolerance and accumulation of
As in T. patula suggests that this species could be used in phytoextraction and re-vegetation in As contaminated sites
A Multiparametric Analysis of the Synergistic Impact of Anti-Parkinson\u27s Drugs on the Fibrillation of Human Serum Albumin
Protein aggregation have been associated with several human neurodegenerative diseases, such as Parkinson\u27s and Alzheimer\u27s diseases. There are several small molecules that can reduce aggregation of proteins. The present study aimed to test the hypothesis that the application of more than one inhibitor either simultaneously or consecutively may result in more efficient inhibition of protein aggregation. To this end, the anti-amyloidogenic behaviour of benserazide hydrochloride (BH) and levodopa (LD) individually and in combination (BH + LD) was investigated using various biophysical, microscopic, and computational techniques. BH, LD, and BH + LD treatments showed inhibitory effects on protein aggregation and had the ability to minimise the amyloid-induced cytotoxicity in human neuroblastoma cell line (SH-SY5Y). The two drugs in combination showed synergism (combination index, CI \u3c 1) between them. These drugs also destabilised the preformed fibrils of human serum albumin (HSA). Our studies consistently showed that the BH + LD treatment showed highest efficacy towards inhibition and disaggregation of amyloid fibrils in comparison to treatment with BH and LD individually. Therefore, application of drugs in combination against fibrillogenesis may represent a new route for development of means for prevention or delaying of the aggregation-related diseases
Molecular Basis of the Inhibition and Disaggregation of Thermally-induced Amyloid Fibrils of Human Serum Albumin by an Anti-Parkinson\u27s Drug, Benserazide Hydrochloride
This study summarises the results of multifactorial analysis of the inhibition/destabilization of human serum albumin (HSA) amyloid fibrils by an anti-Parkinson\u27s drug, benserazide hydrochloride (BH). Different biophysical techniques have been utilized for this purpose. Rayleigh light scattering (RLS) and dynamic light scattering (DLS) confirmed the formation of aggregates, that were identified as amyloid fibrils by the thioflavin T (ThT) and Congo Red (CR) fluorescent dye binding assays. Formation of amyloid fibrils and their inhibition/disaggregation was further characterized by transmission electron microscopy (TEM). The cytoprotective role of BH was examined by cytotoxicity assay performed on the SH-SY5Y neuronal cells. The deviation from linearity in the Stern Volmer plot indicated the presence of static and dynamic quenching of the HSA intrinsic fluorescence by BH. The value of Kd obtained by Scatchard plot was 4.5 × 10−4 M. The changes in the Trp microenvironment caused by the BH binding were further characterized by the synchronous fluorescence spectroscopy. Circular dichroism (CD) and differential scanning calorimetry (DSC) indicated increased HSA stability when bound to BH. Multiple binding sites in human serum albumin (HSA) for BH were found by binding and docking analysis, which revealed the involvement of hydrophobic and hydrogen bonding in the HSA-BH complex formation. Further, the negativity of the binding free energy suggested the spontaneity of the BH-HSA interaction. Overall, our study indicated that BH can serve as an efficient inhibitor/destabilizer of amyloid fibrils and the possible mechanism of this efficiency includes stabilization of HSA in the presence of BH. Therefore, BH can be used in treatment of systemic amyloidoses, since this drug cannot cross blood brain barrier (BBB)