1,398 research outputs found

    A unified approach for composite cost reporting and prediction in the ACT program

    Get PDF
    The Structures Technology Program Office (STPO) at NASA Langley Research Center has held two workshops with representatives from the commercial airframe companies to establish a plan for development of a standard cost reporting format and a cost prediction tool for conceptual and preliminary designers. This paper reviews the findings of the workshop representatives with a plan for implementation of their recommendations. The recommendations of the cost tracking and reporting committee will be implemented by reinstituting the collection of composite part fabrication data in a format similar to the DoD/NASA Structural Composites Fabrication Guide. The process of data collection will be automated by taking advantage of current technology with user friendly computer interfaces and electronic data transmission. Development of a conceptual and preliminary designers' cost prediction model will be initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design (CAD) programs is assessed

    Area and Length Minimizing Flows for Shape Segmentation

    Get PDF
    ©1997 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Presented at the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 17-19, 1997, San Juan, Puerto Rico.DOI: 10.1109/CVPR.1997.609390Several active contour models have been proposed to unify the curve evolution framework with classical energy minimization techniques for segmentation, such as snakes. The essential idea is to evolve a curve (in 20) or a surface (in 30) under constraints from image forces so that it clings to features of interest in an intensity image. Recently the evolution equation has. been derived from first principles as the gradient flow that minimizes a modified length functional, tailored io features such as edges. However, because the flow may be slow to converge in practice, a constant (hyperbolic) term is added to keep the curve/surface moving in the desired direction. In this paper, we provide a justification for this term based on the gradient flow derived from a weighted area functional, with image dependent weighting factor. When combined with the earlier modified length gradient flow we obtain a pde which offers a number of advantages, as illustrated by several examples of shape segmentation on medical images. In many cases the weighted area flow may be used on its own, with significant computational savings

    1/f noise of Josephson-junction-embedded microwave resonators at single photon energies and millikelvin temperatures

    Full text link
    We present measurements of 1/f frequency noise in both linear and Josephson-junction-embedded superconducting aluminum resonators in the low power, low temperature regime - typical operating conditions for superconducting qubits. The addition of the Josephson junction does not result in additional frequency noise, thereby placing an upper limit for fractional critical current fluctuations of 10−810^{-8} (Hz−1/2^{-1/2}) at 1 Hz for sub-micron, shadow evaporated junctions. These values imply a minimum dephasing time for a superconducting qubit due to critical current noise of 40 -- 1400 μ\mus depending on qubit architecture. Occasionally, at temperatures above 50 mK, we observe the activation of individual fluctuators which increase the level of noise significantly and exhibit Lorentzian spectra

    Cavity-assisted quantum bath engineering

    Full text link
    We demonstrate quantum bath engineering for a superconducting artificial atom coupled to a microwave cavity. By tailoring the spectrum of microwave photon shot noise in the cavity, we create a dissipative environment that autonomously relaxes the atom to an arbitrarily specified coherent superposition of the ground and excited states. In the presence of background thermal excitations, this mechanism increases the state purity and effectively cools the dressed atom state to a low temperature

    Quantum State Sensitivity of an Autoresonant Superconducting Circuit

    Get PDF
    When a frequency chirped excitation is applied to a classical high-Q nonlinear oscillator, its motion becomes dynamically synchronized to the drive and large oscillation amplitude is observed, provided the drive strength exceeds the critical threshold for autoresonance. We demonstrate that when such an oscillator is strongly coupled to a quantized superconducting qubit, both the effective nonlinearity and the threshold become a non-trivial function of the qubit-oscillator detuning. Moreover, the autoresonant threshold is sensitive to the quantum state of the qubit and may be used to realize a high fidelity, latching readout whose speed is not limited by the oscillator Q.Comment: 5 pages, 4 figure
    • …
    corecore