We present measurements of 1/f frequency noise in both linear and
Josephson-junction-embedded superconducting aluminum resonators in the low
power, low temperature regime - typical operating conditions for
superconducting qubits. The addition of the Josephson junction does not result
in additional frequency noise, thereby placing an upper limit for fractional
critical current fluctuations of 10−8 (Hz−1/2) at 1 Hz for
sub-micron, shadow evaporated junctions. These values imply a minimum dephasing
time for a superconducting qubit due to critical current noise of 40 -- 1400
μs depending on qubit architecture. Occasionally, at temperatures above 50
mK, we observe the activation of individual fluctuators which increase the
level of noise significantly and exhibit Lorentzian spectra