9 research outputs found

    Replicating sucess: a model for conservation and development projects

    Full text link
    "This study investigates how successful development and conservation projects can be replicated without investing inordinate amounts of money and manpower in the planning process. It offers examples and ideas from 12 different development fields, details key requirements, outlines the strengths and weaknesses of these components and shows how best practices can be emulated elsewhere." [author's abstract

    crop protection and its effectiveness against wildlife a case study of two villages of shivapuri national park nepal

    Get PDF
    A complex relationship between the residents and protected areas continue to be an obstacle to successful conservation of protected areas. Conflicts between park authority and people living around the park pose a threat to conservation. Moreover, crop depredation due to wildlife incurs a severe economic loss to communities living in the close vicinity of the park, affecting the livelihood and well-being of locals. Many studies have been carried out emphasizing the identification and quantification of crop damage, but studies highlighting the means used for the crop protection and their effectiveness are limited. This paper examines frequency of the crop damage by wildlife and efficacy of utilized management practices in Shivapuri National Park (SNP). Altogether 132 households were visited in two buffer zone villages namely, Sikre and Jhor Mahankhal of Shivapuri National Park, Nepal. The study suggested that crop depredation by wildlife was a function of several factors, namely, distance of the farmland from the park, size of the crop raiding animals, frequency of their attacks on the farmland, and the type of crops. Five different measures were identified by the communities which they regularly used to prevent crop damage. Both traditional as well as modern means were used by households to guard crops from invading wild animals. The means of crop protection from wildlife differed according to the type of animal and crop being protected. Biofencing and trenches were effective for the small animals. Watch tower "Machans" and throwing flaming sticks and making noises were the most effective and safest means of crop guarding from all kind of animals. Though crop guarding was intensive, no means were found to be able to prevent crop damage completely. Thus, site specific management strategies as well as technical and financial support from donor organizations would be most useful to minimize crop loss.Nepal Journal of Science and Technology Vol. 16, No.1 (2015) pp. 1-1

    Assessment of Current Energy Consumption Practices, Carbon Emissions and Indoor Air Pollution in Samagaun, Manaslu Conservation Area, Nepal

    No full text
    Nepal is one of the lowest energy consuming countries in the world. More than 85 percent of its total energy comes from traditional biomass energy such as forests, agricultural residues and by-products from crops. Due to increasing per capita energy consumption, natural resources are being depleted with heavy emissions of GHGs in the atmosphere, which causes global warming. The main objective of the study was to investigate current energy consumption practices, to estimate particulate matter and carbon emissions from current practices and to recommend the most suitable alternative energy technologies. The fieldwork was based on primary and secondary data with a design methodology. Firewood burning was found to be the major source of energy used for cooking purposes in Samagaun. The use of this traditional fuel has negative environmental implications, such as deforestation, indoor air pollution and it ultimately affects human health. The results show that traditional cooking stoves (TCS) are used more than improved cooking stoves (ICS). The total amount of firewood used per day by TCS is 2135 kg/day, and by ICS it is 349 kg/day. The average amount of firewood consumed by traditional and improved cooking stoves per day is 62.79 kg and 43.63 kg, respectively. The annual per capita firewood consumption of TCS and ICS is 4401.9 kg and 3266.7 kg, respectively. The calculation shows that per capita firewood consumption by TCS users is 1.3 times higher than that of ICS users. The annual per capita carbon emissions from TCS and ICS is 8055.47 kg CO2e and 5978.15 kg CO2e, respectively. This calculation shows that ICS emits 1.3 times less CO2 into the atmosphere than the TCS. The average mean particulate concentration at normal atmospheric conditions for a traditional cooking stove was found to be 2866 ÎŒg/Nm3 and for an improved cooking stove 1333 ÎŒg/Nm3, both of which far exceed the national standard of 230 ÎŒg/m3 TSP. Based on the study results, metallic improved cooking stoves could be recommended as the best alternative energy technology in the study area

    Outcomes of critically ill solid organ transplant patients with COVID‐19 in the United States

    No full text
    corecore