84 research outputs found

    On the Probabilistic Degree of OR over the Reals

    Get PDF
    We study the probabilistic degree over R of the OR function on n variables. For epsilon in (0,1/3), the epsilon-error probabilistic degree of any Boolean function f:{0,1}^n -> {0,1} over R is the smallest non-negative integer d such that the following holds: there exists a distribution of polynomials Pol in R[x_1,...,x_n] entirely supported on polynomials of degree at most d such that for all z in {0,1}^n, we have Pr_{P ~ Pol}[P(z) = f(z)] >= 1- epsilon. It is known from the works of Tarui (Theoret. Comput. Sci. 1993) and Beigel, Reingold, and Spielman (Proc. 6th CCC 1991), that the epsilon-error probabilistic degree of the OR function is at most O(log n * log(1/epsilon)). Our first observation is that this can be improved to O{log (n atop <= log(1/epsilon))}, which is better for small values of epsilon. In all known constructions of probabilistic polynomials for the OR function (including the above improvement), the polynomials P in the support of the distribution Pol have the following special structure: P(x_1,...,x_n) = 1 - prod_{i in [t]} (1- L_i(x_1,...,x_n)), where each L_i(x_1,..., x_n) is a linear form in the variables x_1,...,x_n, i.e., the polynomial 1-P(bar{x}) is a product of affine forms. We show that the epsilon-error probabilistic degree of OR when restricted to polynomials of the above form is Omega(log (n over <= log(1/epsilon))/log^2 (log (n over <= log(1/epsilon))})), thus matching the above upper bound (up to polylogarithmic factors)

    On the Probabilistic Degree of OR over the Reals

    Full text link
    We study the probabilistic degree over reals of the OR function on nn variables. For an error parameter ϵ\epsilon in (0,1/3), the ϵ\epsilon-error probabilistic degree of any Boolean function ff over reals is the smallest non-negative integer dd such that the following holds: there exists a distribution DD of polynomials entirely supported on polynomials of degree at most dd such that for all z{0,1}nz \in \{0,1\}^n, we have PrPD[P(z)=f(z)]1ϵPr_{P \sim D} [P(z) = f(z) ] \geq 1- \epsilon. It is known from the works of Tarui ({Theoret. Comput. Sci.} 1993) and Beigel, Reingold, and Spielman ({ Proc. 6th CCC} 1991), that the ϵ\epsilon-error probabilistic degree of the OR function is at most O(logn.log1/ϵ)O(\log n.\log 1/\epsilon). Our first observation is that this can be improved to Olog(nlog1/ϵ)O{\log {{n}\choose{\leq \log 1/\epsilon}}}, which is better for small values of ϵ\epsilon. In all known constructions of probabilistic polynomials for the OR function (including the above improvement), the polynomials PP in the support of the distribution DD have the following special structure:P=1(1L1).(1L2)...(1Lt)P = 1 - (1-L_1).(1-L_2)...(1-L_t), where each Li(x1,...,xn)L_i(x_1,..., x_n) is a linear form in the variables x1,...,xnx_1,...,x_n, i.e., the polynomial 1P(x1,...,xn)1-P(x_1,...,x_n) is a product of affine forms. We show that the ϵ\epsilon-error probabilistic degree of OR when restricted to polynomials of the above form is Ω(loga/log2a)\Omega ( \log a/\log^2 a ) where a=log(nlog1/ϵ)a = \log {{n}\choose{\leq \log 1/\epsilon}}. Thus matching the above upper bound (up to poly-logarithmic factors)

    OAM beam generation using all-fiber fused couplers

    No full text
    We demonstrate the orbital angular momentum (OAM) beam generation using an all-fiber fused coupler based on single mode fiber (SMF) and air-core fiber. The fabricated device is directly SMF compatible with ~80% power coupling efficiency

    OAM Generation in optical fibre and free space devices

    No full text
    Orbital angular momentum (OAM) beam generation has been investigated using all-fibre and free space configurations. In the first approach, the composite fused coupler is based on a single mode fibre (SMF) and an air-core fibre. The second approach exploits geometrical phase introduced by nanostructuring of silica glass. Both approaches are demonstrated to achieve power coupling efficiencies in excess of 80% at telecom wavelengths

    Blip-Up Blip-Down Circular EPI (BUDA-cEPI) for Distortion-Free dMRI with Rapid Unrolled Deep Learning Reconstruction

    Full text link
    Purpose: We implemented the blip-up, blip-down circular echo planar imaging (BUDA-cEPI) sequence with readout and phase partial Fourier to reduced off-resonance effect and T2* blurring. BUDA-cEPI reconstruction with S-based low-rank modeling of local k-space neighborhoods (S-LORAKS) is shown to be effective at reconstructing the highly under-sampled BUDA-cEPI data, but it is computationally intensive. Thus, we developed an ML-based reconstruction technique termed "BUDA-cEPI RUN-UP" to enable fast reconstruction. Methods: BUDA-cEPI RUN-UP - a model-based framework that incorporates off-resonance and eddy current effects was unrolled through an artificial neural network with only six gradient updates. The unrolled network alternates between data consistency (i.e., forward BUDA-cEPI and its adjoint) and regularization steps where U-Net plays a role as the regularizer. To handle the partial Fourier effect, the virtual coil concept was also incorporated into the reconstruction to effectively take advantage of the smooth phase prior, and trained to predict the ground-truth images obtained by BUDA-cEPI with S-LORAKS. Results: BUDA-cEPI with S-LORAKS reconstruction enabled the management of off-resonance, partial Fourier, and residual aliasing artifacts. However, the reconstruction time is approximately 225 seconds per slice, which may not be practical in a clinical setting. In contrast, the proposed BUDA-cEPI RUN-UP yielded similar results to BUDA-cEPI with S-LORAKS, with less than a 5% normalized root mean square error detected, while the reconstruction time is approximately 3 seconds. Conclusion: BUDA-cEPI RUN-UP was shown to reduce the reconstruction time by ~88x when compared to the state-of-the-art technique, while preserving imaging details as demonstrated through DTI application.Comment: Number: Figures: 8 Tables: 3 References: 7

    Daksha: On Alert for High Energy Transients

    Full text link
    We present Daksha, a proposed high energy transients mission for the study of electromagnetic counterparts of gravitational wave sources, and gamma ray bursts. Daksha will comprise of two satellites in low earth equatorial orbits, on opposite sides of earth. Each satellite will carry three types of detectors to cover the entire sky in an energy range from 1 keV to >1 MeV. Any transients detected on-board will be announced publicly within minutes of discovery. All photon data will be downloaded in ground station passes to obtain source positions, spectra, and light curves. In addition, Daksha will address a wide range of science cases including monitoring X-ray pulsars, studies of magnetars, solar flares, searches for fast radio burst counterparts, routine monitoring of bright persistent high energy sources, terrestrial gamma-ray flashes, and probing primordial black hole abundances through lensing. In this paper, we discuss the technical capabilities of Daksha, while the detailed science case is discussed in a separate paper.Comment: 9 pages, 3 figures, 1 table. Additional information about the mission is available at https://www.dakshasat.in
    corecore