2,651 research outputs found

    Jet Correlations with Identified Particles from PHENIX: Methods and Results

    Full text link
    Azimuthal angle two particle correlations have been shown to be a powerful probe for extracting novel features of the interaction between hard scattered partons and the medium produced in Au+Au collisions at RHIC. At intermediate pTp_T, 2-5GeV/c, the jets have been shown to be significantly modified in both their particle composition and their angular distribution compared to p+p collisions. Additionally, angular two particle correlations with identified hadrons provide information on the possible role of modified hadronization scenarios such as partonic recombination, which might allow medium modified jet fragmentation by connecting hard scattered partons to low pTp_T thermal partons. PHENIX has excellent particle identification capabilities and has developed robust techniques for extracting jet correlations from the large underlying event. We present recent PHENIX results from Au+Au collisions for a variety of pTp_T and particle type combinations. We also present p+p measurements as a baseline. We show evidence that protons and anti-protons in the pTp_T region of enhanced baryon and anti-baryon single particle production are produced in close angle pairs of opposite charge and that the strong modifications to the away side shape observed for charged hadron correlations are also present when baryons are correlated.Comment: talk given at XIth International Workshop on Correlations and Fluctuations in Multiparticle Production, Hangzhou China November 21-24 200

    Predicting invasive breast cancer versus DCIS in different age groups.

    Get PDF
    BackgroundIncreasing focus on potentially unnecessary diagnosis and treatment of certain breast cancers prompted our investigation of whether clinical and mammographic features predictive of invasive breast cancer versus ductal carcinoma in situ (DCIS) differ by age.MethodsWe analyzed 1,475 malignant breast biopsies, 1,063 invasive and 412 DCIS, from 35,871 prospectively collected consecutive diagnostic mammograms interpreted at University of California, San Francisco between 1/6/1997 and 6/29/2007. We constructed three logistic regression models to predict the probability of invasive cancer versus DCIS for the following groups: women ≥ 65 (older group), women 50-64 (middle age group), and women < 50 (younger group). We identified significant predictors and measured the performance in all models using area under the receiver operating characteristic curve (AUC).ResultsThe models for older and the middle age groups performed significantly better than the model for younger group (AUC = 0.848 vs, 0.778; p = 0.049 and AUC = 0.851 vs, 0.778; p = 0.022, respectively). Palpability and principal mammographic finding were significant predictors in distinguishing invasive from DCIS in all age groups. Family history of breast cancer, mass shape and mass margins were significant positive predictors of invasive cancer in the older group whereas calcification distribution was a negative predictor of invasive cancer (i.e. predicted DCIS). In the middle age group--mass margins, and in the younger group--mass size were positive predictors of invasive cancer.ConclusionsClinical and mammographic finding features predict invasive breast cancer versus DCIS better in older women than younger women. Specific predictive variables differ based on age

    Reactions to uncertainty and the accuracy of diagnostic mammography.

    Get PDF
    BackgroundReactions to uncertainty in clinical medicine can affect decision making.ObjectiveTo assess the extent to which radiologists' reactions to uncertainty influence diagnostic mammography interpretation.DesignCross-sectional responses to a mailed survey assessed reactions to uncertainty using a well-validated instrument. Responses were linked to radiologists' diagnostic mammography interpretive performance obtained from three regional mammography registries.ParticipantsOne hundred thirty-two radiologists from New Hampshire, Colorado, and Washington.MeasurementMean scores and either standard errors or confidence intervals were used to assess physicians' reactions to uncertainty. Multivariable logistic regression models were fit via generalized estimating equations to assess the impact of uncertainty on diagnostic mammography interpretive performance while adjusting for potential confounders.ResultsWhen examining radiologists' interpretation of additional diagnostic mammograms (those after screening mammograms that detected abnormalities), a 5-point increase in the reactions to uncertainty score was associated with a 17% higher odds of having a positive mammogram given cancer was diagnosed during follow-up (sensitivity), a 6% lower odds of a negative mammogram given no cancer (specificity), a 4% lower odds (not significant) of a cancer diagnosis given a positive mammogram (positive predictive value [PPV]), and a 5% higher odds of having a positive mammogram (abnormal interpretation).ConclusionMammograms interpreted by radiologists who have more discomfort with uncertainty have higher likelihood of being recalled

    Quark Matter 2006: high-pT and jets

    Get PDF
    An overview of new experimental results on high-\pT{} particle production and jets in heavy ion collisions from the Quark Matter 2006 conference is presented.Comment: Presented at Quark Matter 200

    Correlations of electrons from heavy flavor decay in p+p, d+Au and Au+Au collisions

    Get PDF
    In relativistic heavy ion collisions heavy flavor probes are crucial to understand the interactions between partons and the produced hot nuclear matter. Measurements in p+p collisions provide information about how the heavy quarks are produced and fragment and in d+Au collisions are sensitive to possible effects from cold nuclear matter. Azimuthal correlation measurements involving heavy flavor probes are complementary to single particle spectra measurements and provide additional information about production and interactions of heavy quarks. Measurements of electrons with heavy flavor decay with other hadrons from the event can provide information about how the heavy quark interacts with the produced matter and can be compared to similar measurements from light hadron correlations. Correlations between electrons from heavy flavor decay with muons, also from heavy flavor decay, can provide further information about heavy flavor production and cold nuclear matter effects in d+Au collisions with a very clean signal. We present PHENIX results for electron-hadron correlations in p+p and Au+Au collisions and electron-muon correlations in p+p and d+Au collisions and discuss the implications of these measurements

    Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC

    Get PDF
    A new Hadron Blind Detector (HBD) for electron identification in high density hadron environment has been installed in the PHENIX detector at RHIC in the fall of 2006. The HBD will identify low momentum electron-positron pairs to reduce the combinatorial background in the e+ee^{+}e^{-} mass spectrum, mainly in the low-mass region below 1 GeV/c2^{2}. The HBD is a windowless proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses pure CF4_{4} as a radiator and a detector gas. Construction details and the expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure

    A Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the PHENIX experiment at RHIC. The HBD will allow a precise measurement of electron-positron pairs from the decay of the light vector mesons and the low-mass pair continuum in heavy-ion collisions. The detector consists of a 50 cm long radiator filled with pure CF4 and directly coupled in a windowless configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding

    PHENIX Highlights

    Full text link
    Recent highlights of measurements by the PHENIX experiment at RHIC are presented.Comment: 8 pages, 9 figures. Talk at Quark Matter 200

    Hadronization of Dense Partonic Matter

    Get PDF
    The parton recombination model has turned out to be a valuable tool to describe hadronization in high energy heavy ion collisions. I review the model and revisit recent progress in our understanding of hadron correlations. I also discuss higher Fock states in the hadrons, possible violations of the elliptic flow scaling and recombination effects in more dilute systems.Comment: 8 pages, 4 figures; plenary talk delivered at SQM 2006, to appear in J. Phys.
    corecore