30 research outputs found

    Plasmodium falciparum Hep1 is required to prevent the self aggregation of PfHsp70-3

    Get PDF
    The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria

    The PEX7-Mediated Peroxisomal Import System Is Required for Fungal Development and Pathogenicity in Magnaporthe oryzae

    Get PDF
    In eukaryotes, microbodies called peroxisomes play important roles in cellular activities during the life cycle. Previous studies indicate that peroxisomal functions are important for plant infection in many phytopathogenic fungi, but detailed relationships between fungal pathogenicity and peroxisomal function still remain unclear. Here we report the importance of peroxisomal protein import through PTS2 (Peroxisomal Targeting Signal 2) in fungal development and pathogenicity of Magnaporthe oryzae. Using an Agrobacterium tumefaciens-mediated transformation library, a pathogenicity-defective mutant was isolated from M. oryzae and identified as a T-DNA insert in the PTS2 receptor gene, MoPEX7. Gene disruption of MoPEX7 abolished peroxisomal localization of a thiolase (MoTHL1) containing PTS2, supporting its role in the peroxisomal protein import machinery. ΔMopex7 showed significantly reduced mycelial growth on media containing short-chain fatty acids as a sole carbon source. ΔMopex7 produced fewer conidiophores and conidia, but conidial germination was normal. Conidia of ΔMopex7 were able to develop appressoria, but failed to cause disease in plant cells, except after wound inoculation. Appressoria formed by ΔMopex7 showed a defect in turgor generation due to a delay in lipid degradation and increased cell wall porosity during maturation. Taken together, our results suggest that the MoPEX7-mediated peroxisomal matrix protein import system is required for fungal development and pathogenicity M. oryzae

    Crystal structure of peroxisomal targeting signal-2 bound to its receptor complex Pex7p–Pex21p

    Get PDF
    ペルオキシソーム病RCDP-1の分子機構の解明.京都大学プレスリリース.2013-07-01.Appropriate targeting of matrix proteins to peroxisomes is mainly directed by two types of peroxisomal targeting signals, PTS1 and PTS2. Although the basis of PTS1 recognition has been revealed by structural studies, that of PTS2 recognition remains elusive. Here we present the crystal structure of a heterotrimeric PTS2-recognition complex from Saccharomyces cerevisiae, containing Pex7p, the C-terminal region of Pex21p and the PTS2 of the peroxisomal 3-ketoacyl-CoA thiolase. Pex7p forms a β-propeller structure and provides a platform for cooperative interactions with both the amphipathic PTS2 helix and Pex21p. The C-terminal region of Pex21p directly covers the hydrophobic surfaces of both Pex7p and PTS2, and the resulting hydrophobic core is the primary determinant of stable complex formation. Together with in vivo and in vitro functional assays of Pex7p and Pex21p variants, our findings reveal the molecular mechanism of PTS2 recognition

    Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor

    No full text
    The import motor of the mitochondrial translocase of the inner membrane (TIM23) mediates the ATP-dependent translocation of preproteins into the mitochondrial matrix by cycles of binding to and release from mtHsp70. An essential step of this process is the stimulation of the ATPase activity of mtHsp70 performed by the J cochaperone Tim14. Tim14 forms a complex with the J-like protein Tim16. The crystal structure of this complex shows that the conserved domains of the two proteins have virtually identical folds but completely different surfaces enabling them to perform different functions. The Tim14-Tim16 dimer reveals a previously undescribed arrangement of J and J-like domains. Mutations that destroy the complex between Tim14 and Tim16 are lethal demonstrating that complex formation is an essential requirement for the viability of cells. We further demonstrate tight regulation of the cochaperone activity of Tim14 by Tim16. The first crystal structure of a J domain in complex with a regulatory protein provides new insights into the function of the mitochondrial TIM23 translocase and the Hsp70 chaperone system in general
    corecore