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Abstract 

 

Appropriate targeting of matrix proteins to peroxisomes is mainly directed by two types of 

peroxisomal targeting signals, PTS1 and PTS2. Although the basis of PTS1 recognition has 

been revealed by structural studies, that of PTS2 recognition remains elusive. Here, we present 

the crystal structure of a hetero-trimeric PTS2-recognition complex from Saccharomyces 

cerevisiae, containing Pex7p, the C-terminal region of Pex21p, and the PTS2 of the 

peroxisomal 3-ketoacyl-CoA thiolase. Pex7p forms a beta-propeller structure and provides a 

platform for cooperative interactions with both the amphipathic PTS2 helix and Pex21p. The 

C-terminal region of Pex21p directly covers the hydrophobic surfaces of both Pex7p and PTS2, 

and the resulting hydrophobic core is the primary determinant of stable complex formation. 

Together with in vivo and in vitro functional assays of Pex7p and Pex21p variants, our findings 

reveal the molecular mechanism of PTS2 recognition. 
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INTRODUCTION 

Many proteins use targeting signals to reach the appropriate organelles. Organelle-specific 

receptor proteins recognize these targeting signals by direct protein-protein interactions. This is 

also the case with peroxisomes, single membrane-bound organelles containing enzymes 

involved in various metabolic pathways such as hydrogen peroxide detoxification and 

ȕ-oxidation of fatty acids1. More than twenty proteins work in concert to assemble functional 

peroxisomes. These proteins are named peroxins, and are encoded by the PEX genes2,3. In 

human, defects in peroxins disrupt import of essential enzymes into peroxisomes, resulting in a 

group of human diseases known as the peroxisomal biogenesis disorders (PBDs)4. The receptor 

proteins that recognize peroxisomal targeting signals are crucial peroxins.   

There are two types of targeting signals for peroxisomal matrix proteins: peroxisomal 

targeting signal–1 (PTS1) at C-termini, and peroxisomal targeting signal–2 (PTS2) near 

N-termini2. PTS1 is recognized by the peroxin Pex5p, and PTS2 is recognized by the peroxin 

Pex7p together with a co-receptor peroxin. Crystal structures of the PTS1-binding domain of 

Pex5p have been solved in apo-form5, with a PTS1 peptide6 or with a PTS1-cargo (mSCP2)5. 

On the other hand, no crystal structure of Pex7p or the PTS2-interaction domain of the 

co-receptor peroxin, ligated with or without PTS2, has been reported to date; consequently, 
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many questions remain unsolved7,8.  

One important question regards what interactions between PTS2 and the receptors 

determine the characteristic sequence motif of PTS2. The PTS2 sequence was initially 

identified in rat peroxisomal thiolase9,10. Later, the sequence motif of PTS2 was refined to 

R-[L/V/I/Q]-xx-[L/V/I/H]-[L/S/G/A]-x-[H/Q]-[L/A] (x = any residue) by bioinformatics 

analysis of available functional PTS2 sequences11. Positions 2, 5, and 9 of this motif are mostly 

limited to hydrophobic residues whereas positions 1 and 8 are limited to hydrophilic residues. 

In order to explain these sequence constraints, the detailed interactions between PTS2 and its 

receptors must be determined. 

Another question regards how Pex7p provides the binding site for PTS2. Pex7p is an 

evolutionarily conserved soluble protein containing six WD40 repeats12-20. The first Pex7p 

identified was S. cerevisiae Pex7p (also known as Peb1p or Pas7p), which was shown to be the 

receptor of Fox3p (also known as Pot1p)12,13,21. Fox3p contains a functional PTS2 at its 

N-terminus21,22 and functions as a 3-ketoacyl-CoA thiolase (EC 2.3.1.16) at the final step of the 

ȕ-oxidation1. Human Pex7p was identified as the homolog of S. cerevisiae Pex7p and linked to 

a fatal PBD, rhizomelic chondrodysplasia punctata type 1 (RCDP1)14-16,23,24. Since Pex7p is a 

WD40 protein, its structure has been modeled using the structures of other WD40 proteins, and 
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the possible interactions between Pex7p and PTS2 has been proposed25. However, we still lack 

a complete view of the interactions between Pex7p and PTS2. 

A more challenging, but also intriguing, question regards how the co-receptor peroxin 

assists Pex7p in PTS2 recognition. The co-receptor peroxin is species-specific. Paralogous 

peroxins, Pex18p and Pex21p, act as the co-receptor of Pex7p in S. cerevisiae26, and their 

homolog Pex20p exists in other fungi20,27,28. The PTS1 receptor, Pex5p, also acts as the 

co-receptor of Pex7p in Arabidopsis thaliana19,29 and in mammals30-32. The domain structures 

of these co-receptor peroxins share common features: First, their N-terminal domains contain a 

conserved motif27,33 that is ubiquitinated during the recycling of receptors from peroxisomal 

membrane to cytosol34,35. Second, the Pex14p-binding motif (Wxxx[F/Y]) interacts with 

Pex14p36, a peroxin that forms a docking complex on the peroxisomal membrane. Third, the 

Pex7p-binding domain (Pex7pBD) is essential for the interaction with Pex7p and the import of 

PTS2-cargos into peroxisomes27,32,33. In Pex18p, Pex21p, and Pex20p, Pex7pBD resides close 

to the C-termini, whereas in Pex5p, an additional PTS1-binding domain flanks the C-terminal 

side of Pex7pBD27. Pex7pBD seems to be the most important region for interaction with Pex7p, 

but where does Pex7pBD bind on Pex7p, and how does it support PTS2-cargo transport?  

Since their discoveries, PTS2, Pex7p, and the co-receptor peroxins have been studied and 
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characterized. However, the details of the interactions among the three factors remain unclear. 

To understand the mechanism of PTS2 recognition and the molecular basis of RCDP1, we 

solved the crystal structure of a PTS2-recognition complex from S. cerevisiae. The structure 

contains Pex7p, the C-terminal region of Pex21p (Lys190–Asp288; hereafter referred to as 

Pex21pC), and the N-terminal 15 residues of Fox3p (hereafter referred to as Fox3pN), and 

reveals the conserved mechanism of PTS2 recognition and its differences with other N-terminal 

targeting signals.  
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RESULTS 

Preparation of Pex7p–Pex21pC–Fox3pN-MBP complex 

We purified the ternary complex containing Pex7p, Pex21pC, and Fox3pN-MBP by 

mixing the three proteins after purification of individual components. Pex7p, which was 

difficult to obtain in soluble form using an Escherichia coli expression system, was expressed 

in Pichia pastoris as GST-fusion protein. Well-diffracting plate crystals grew when a Pex7p 

mutant with a nine-residue deletion (ǻ257–265) was used instead of wild-type Pex7p (Fig. 1, 

Supplementary Fig. 1). Pex21pC was sufficient to form the ternary complex and was more 

resistant to degradation than the homologous region of Pex18p; it was therefore chosen for 

crystallization. Fox3pN-MBP, used instead of full-length Fox3p, was constructed by attaching 

Fox3pN to the N-terminus of the maltose-binding protein (MBP) from E. coli by a two-residue 

linker (Arg-Ser) (Fig. 1a). 

Pex7p, Pex21pC, and Fox3p exhibited cooperative complex formation, as demonstrated 

by pull-down experiments using wild-type Pex7p (or GST-Pex7p), Pex21pC (or 

MBP-Pex21pC), and Fox3p (Fig. 2). The ternary complex containing Pex7p, Pex21pC, and 

Fox3p was much more stable than any of the binary complexes. Although we did not detect the 
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binary interaction of Fox3p with Pex7p in the buffer with 300 mM NaCl by the pull-down 

experiment, we observed weak but specific binding of Fox3p to Pex7p in the buffer with 50 

mM NaCl (Supplementary Fig. 2). 

 

Overall structure of the hetero-trimeric complex 

The hetero-trimeric structure of Pex7p–Pex21pC–Fox3pN-MBP was solved by molecular 

replacement using crystal structures of MBP and WDR5 as search models. The overall 

electron-density map was clear (Supplementary Fig. 3), allowing us to construct atomic models 

for all regions of Pex7p, Pex21pC, and Fox3pN-MBP except for the disordered loops of Pex7p 

(DL1, Lys164–Arg174; DL2, Leu253–Ser272; DL3, Asp317–Tyr323) and Pex21pC (DL1, 

Lys190–Gln196; DL2, Pro212–Leu223; DL3, Lys252–Ala259) (Fig. 1c, Supplementary Fig. 

1a,b). Only one hetero-trimer exists in the crystallographic asymmetric unit, and the model was 

refined at 1.8 Å resolution to a free R-factor of 22.4% (Table 1).  

The resulting structure revealed the characteristic assembly of the three proteins (Fig. 

1b,c). Pex7p forms a ring structure with a seven-bladed ȕ-propeller fold. Pex21pC consists of 

three parts: a cluster of three Į-helices (Į1–3), a small three-stranded ȕ-sheet (ȕ1–3), and a 

stretched C-terminal loop. The helical cluster and the ȕ-sheet of Pex21pC bind on the rim of the 
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top surface of Pex7p, and they cooperatively form a binding pocket for Fox3pN. The 

C-terminal loop of Pex21pC extends along the side of Pex7p and does not interact with Fox3pN. 

Fox3pN adopts an Į-helical conformation and stretches from the globular region of MBP into 

the binding pocket prepared by Pex7p and Pex21pC. The buried surface area of Fox3pN (1,240 

Å2) in the pocket accounts for more than 70% of its total solvent-accessible surface area (1,740 

Å2).  

 

Special motif of Pex7p and Pex7p–Pex21p complex formation 

The crystal structure revealed structural features important for Pex7p–Pex21p complex 

formation. Although the framework of Pex7p is the same as that of typical WD40 proteins37, it 

contains a special region at its N-terminus. The N-terminal 44 residues of Pex7p have low 

sequence similarity to other WD40 motifs13, but this region can nonetheless assume a 

WD40-like fold and complete the ring structure (Fig. 1c, Supplementary Fig. 4ab). In this 

N-terminal region, the loop between ȕ-strand 1B and 1C (Asn31–Asn37) is longer than other 

adjacent loops composing the top surface of Pex7p, and thus forms a bulge (Fig. 1c, 3a, 

Supplementary Fig. 4a), hereafter referred as to the bulge loop. The bulge loop contains a 

six-residue consensus motif, [N/H]-[F/Y]-G-[L/I]-[V/L/I/S/A]-G, whose length and 
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composition are conserved in Pex7p homologs (Supplementary Fig. 1a). By partially adopting 

a 310-helix structure, the bulge loop exposes the hydrophobic residues Phe32, Leu34, and Val35 

on its surface (Fig. 3b). When Pex7p forms a complex with Pex21pC, this protruding 

hydrophobic bulge loop is covered by the hydrophobic pocket of Pex21pC formed at the hinge 

region between Į3 and ȕ1 (Fig. 3b).  

The bulge loop constitutes half of a hydrophobic ridge on the top surface of Pex7p (Fig. 

3a) that consists of residues from blade 1 (the bulge loop), blade 6 (Leu284, Tyr304, Met306), 

and blade 7 (Phe344, Trp364) (Supplementary Fig. 4a). The hydrophobic ridge contacts the 

hydrophobic surface of Pex21p, which contains nine hydrophobic residues: Cys210 on Į1; 

Val227 and Leu231 on Į2; Phe236, Ile237, Leu239, and Met240 on Į3; Leu250 on ȕ1; and 

Leu262 on ȕ2 (Fig. 3b, Supplementary Fig. 4c). Four residues of Pex7p, Phe32, Leu34, Phe344, 

and Trp364, surround Pex21p Phe236 (Fig. 3b, Supplementary Fig. 3b), which is highly 

conserved among the co-receptor peroxins (Supplementary Fig. 1bc).  

Pex7p has another characteristic region involved in binding with Pex21pC. An acidic 

patch is formed at the side of the hydrophobic ridge on blades 6 and 7 (Fig. 3a). This acidic 

patch consists of two components: the side chain of Pex7p Glu343 and the clustered main-chain 

C=O groups of Pex7p Met306, Thr339, and His341 (Fig. 3a, Supplementary Fig. 4a). The side 
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chain of Pex7p Glu343 interacts electrostatically with the side-chain OH group of Pex21p 

Ser234 and the main-chain NH group of Pex21p Lys235 (Fig. 3b). Because Pex21p Ser234 and 

Lys235 are located in the N-terminal portion of Į3, they are positively charged by the dipole 

effect of the Į-helix. The clustered main-chain C=O groups of Pex7p Met306, Thr339, and 

His341 are in range to form hydrogen bonds with Pex21p Lys230 (Fig. 3b).  

Most of the residues forming the hydrophobic and electrostatic interfaces between Pex7p 

and Pex21pC are conserved among the corresponding homologs (Supplementary Fig. 1). 

 

PTS2 recognition by cooperation of Pex7p and Pex21p 

The Į-helix of Fox3pN is amphipathic. Fox3p Met1, Leu5, Ile8, Leu12, and Val13 form 

the hydrophobic surface, whereas the remaining residues form the hydrophilic surface (Fig. 4a). 

As a result, the key residues of PTS2 are separated in two groups: the hydrophilic key residues 

(Fox3p Arg4, His11) and the hydrophobic key residues (Fox3p Leu5, Ile8, Leu12).  

The binding site of PTS2 is a large cleft that holds the Į-helix of Fox3pN and contains two 

minor grooves that accept side chains protruding from the Į-helix (Fig. 1c, 4bc). One groove is 

hydrophilic and the other is hydrophobic. The hydrophilic groove at the center of the top 

surface of Pex7p contains two pockets that accept the hydrophilic key residues of PTS2 (Fox3p 
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Arg4 and His11) (Fig. 3a, 4c). Fox3p Arg4 is surrounded by the residues of Pex7p blades 1–3, 

and its guanidine group is fixed by formation of salt bridges with the carboxyl groups of two 

acidic residues, Pex7p Asp61 and Glu106 (Fig. 3a, 4b). Fox3p His11 is surrounded by the 

residues of Pex7p blades 4–6, and its imidazole ring is fixed by formation of hydrogen bonds 

with Pex7p Tyr178, Glu222, and Tyr304. When Fox3p Arg4 and His11 bind to the top surface 

of Pex7p in the correct orientation, the hydrophobic residues of Fox3pN consequently fit into 

the hydrophobic groove (Fig. 4c), which is formed in between the hydrophobic interfaces of 

Pex7p and Pex21pC (Fig. 3a). All three hydrophobic key residues (Fox3p Leu5, Ile8, Leu12) of 

PTS2 are hidden inside the hydrophobic groove and form van der Waals contacts with Pex21p 

Phe236 (Fig. 4bc, Supplementary Fig. 3b). Additionally, Fox3p Met1 is embedded in the site 

above the bulge loop (Fig. 3a, 4bc).  

Insertion of the hydrophobic side chains of PTS2 to the hydrophobic groove completes a 

hydrophobic core around the central residue, Pex21p Phe236 (Fig. 4b). Other components of 

the hydrophobic core are the hydrophobic residues that form the hydrophobic interfaces of 

Pex7p and Pex21p described above (Fig. 3b).  

The residues of Pex7p and Pex21pC that form the binding site for PTS2 are well 

conserved among the corresponding homologs (Supplementary Fig. 1). In particular, the Į1 
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helix of Pex21pC, which forms a lid to cover PTS2, is also a conserved region among the 

co-receptor peroxins as with Pex21p Į2 and Į3, which compose Pex7pBD8 (Supplementary Fig. 

1b).  

 

In vitro and in vivo assays of Pex7p and Pex21p mutants 

To examine the functional importance of the interaction modules of Pex21p and Pex7p in 

ternary complex formation and PTS2-cargo transport, we performed in vitro and in vivo 

functional assays. For the in vitro assays, we conducted pull-down experiments using amylose 

resin with purified MBP-Pex21pC (or its variants), Pex7p (or its variants), and Fox3p (Fig. 5ab). 

For the in vivo assays, S. cerevisiae gene deletion strains of Pex7p alone (ǻpex7) or both 

Pex18p and Pex21p (ǻpex18ǻpex21) were created from wild-type strain BY20134 (W303-1A 

background). C-terminally His6-tagged Pex7p, Pex21p, and their variants were expressed in the 

deletion strains, and the growth of these derivative strains on oleic-acid medium (SCOT agar 

plate) was examined. As reported previously13,26, ǻpex7 and ǻpex18ǻpex21 exhibited growth 

defects on SCOT plates due to the inability to import sufficient Fox3p into peroxisomes, 

whereas ǻpex7 expressing wild-type Pex7p and ǻpex18ǻpex21 expressing Pex21p exhibited 

normal growth (Fig. 5c). Simultaneously, Fox3pN-EGFP and mCherry-PTS1 (PTS1 = 
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Ser-Lys-Leu) were co-expressed in all strains, and their localizations were observed using a 

confocal microscope (Supplementary Fig. 5a). Expressed Pex7p and Pex21p variants were 

detected by western blotting (Supplementary Fig. 5b). 

To investigate the importance of the hydrophobic core, we replaced the central residue 

Pex21p Phe236 and the adjacent conserved residues (Pex7p Phe32, Leu34, Phe344, and 

Trp364) with Ala or Asp. Single-Ala mutants of these residues did not have significant effects 

on formation of the ternary complex (Fig. 5b). However, when we mutated Pex21p Phe236 or 

Pex7p Leu34 to Asp (Pex21p F236D, Pex7p L34D), or simultaneously mutated two nearby 

residues of Pex7p to Ala (Pex7p F32A L34A, F344A W364A), these mutants exhibited clear 

defects in complex formation (Fig. 5a,b). These mutants also failed to restore growth of ǻpex7 

or ǻpex18ǻpex21 on SCOT plates (Fig. 5c) and were unable to restore localization of 

Fox3pN-EGFP to peroxisomes (Supplementary Fig. 5a). Among the single-Ala mutants, the 

Pex7p L34A and F344A mutants were both able to import enough amount of Fox3p into 

peroxisomes to restore growth of ǻpex7 on SCOT plates (Fig. 5c), but the efficiency of 

Fox3pN-EGFP transport was not sufficient for formation of clear spots (Supplementary Fig. 5a). 

The Pex21p F236A mutant was less able to restore growth of ǻpex18ǻpex21 on SCOT plates 

(Fig. 5c), although we did not observe a clear effect of this mutant on complex formation (Fig. 
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5a). Pex21p Ile206, located on the Į1 helix, is also a component of the hydrophobic core. The 

Pex21p I206D mutant exhibited lower affinity for Pex7p and Fox3p (Fig. 5a) and was unable to 

restore growth of ǻpex18ǻpex21 on SCOT plates (Fig. 5c). The results of Pex21p I206D were 

similar to those of the Pex21p ǻĮ1 mutant (ǻ197–211) (Fig. 5a,c). Mutations of residues 

outside the hydrophobic core (Pex21p I202D, K230E) did not affect complex formation (Fig. 

5a), and these mutants were able to restore growth of ǻpex18ǻpex21 on SCOT plates (Fig. 5c). 

Two Pex21p deletion mutants, ǻL (ǻ214–229) and ǻC (ǻ247–288), were able to restore 

growth of ǻpex18ǻpex21 on SCOT plates (Fig. 5c). However, the deletion of the 42 C-terminal 

residues of the Pex21p ǻC decreased the affinity of Pex21pC for Pex7p and Fox3p (Fig. 5a). 

We next examined the role of Pex7p residues that form electrostatic interactions with the 

hydrophilic key residues of PTS2 (Fox3p Arg4, His11). Consequently, we generated two 

gain-of-function variants of Pex7p that can recognize two artificial PTS2s containing Glu in 

place of either Arg4 or His11 in Fox3p. The mutated Pex7p containing D61R E106H lost the 

ability to import wild-type Fox3p into peroxisomes and failed to restore the growth of ǻpex7 on 

SCOT plate (Fig. 5c). When we co-expressed the Pex7p D61R E106H mutant with the Fox3p 

R4E mutant, the transformant was able to grow on SCOT plate as rapidly as a strain expressing 

wild-type Pex7p (Fig. 5c). The same result was obtained in the case of a strain co-expressing 
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the Pex7p Y178R Y304R and Fox3p H11E mutants. To exclude the possibility that the 

restoration of growth was due to overexpression of Fox3p mutants, we co-expressed the mutant 

proteins in the other combination. Neither the co-expression of Pex7p D61R E106H with 

Fox3p H11E nor co-expression of Pex7p Y178R Y304R with Fox3p R4E restored growth of 

ǻpex7 on SCOT plates (Fig. 5c). 
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DISCUSSION 

The crystal structure we report here reveals the spatial organization of the 

Pex7p–Pex21pC–Fox3pN complex and provides an explanation for the cooperative binding 

among Pex7p, Pex21pC, and Fox3p observed in the pull-down experiments. Both Fox3pN and 

Pex21pC bind to the top surface of Pex7p, which is a common interaction site for WD40 

proteins38,39. On this surface, the hydrophobic residues of Pex7p, Pex21pC and Fox3pN 

cooperatively form a hydrophobic core around the central residue Pex21p Phe236. These 

hydrophobic residues are evolutionarily well conserved, which suggests that formation of the 

hydrophobic core is important for stabilizing the ternary complex. Any combination of the 

binary complexes (Pex7p–Fox3pN, Pex7p–Pex21pC, or Pex21pC–Fox3pN) leaves a part of 

the hydrophobic surface exposed to solution, destabilizing the binary complex. The 

electrostatic interactions between Pex7p and Pex21pC and between Pex7p and Fox3pN take 

place at both sides of the hydrophobic core, thus strengthening the hydrophobic effect and 

further stabilizing the ternary complex.  

We confirmed the importance of the hydrophobic core on complex formation and 

PTS2-cargo transport by mutational analyses of residues inside and outside the hydrophobic 

core. Mutations of Pex21p Phe236 (F236A and F236D) were the most severe among the Ala 
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and Asp mutants examined. The effects of Asp mutations decreased as residues contributed less 

to the rigidity of the hydrophobic core, in the following order (i.e., from greatest to lowest 

effect): Pex21p F236D, Pex7p L34D, Pex21p I206D, and Pex21p I202D. We assume that a 

minimal threshold of rigidity of the hydrophobic core is required for functional PTS2-cargo 

transport. Although some of the mutants (Pex7p F344A W364A, Pex21p I206D, and Pex21p 

ǻĮ1) exhibited only moderate defects in complex formation, they were unable to form 

hydrophobic cores with rigidities above this threshold. The decrease in affinity of the Pex21p 

ǻC mutant for Pex7p and Fox3p implies that the 42 C-terminal residues of Pex21p also 

contribute to complex formation; however, these residues are not essential for the 

hydrophobic-core formation or PTS2-cargo transport. Assuming that the hydrophobic core is 

the primary determinant of stable complex formation, destabilization of the hydrophobic core is 

predicted to result in PTS2-cargo release. Further studies of kinetics and thermodynamic 

analyses using purified Pex7p and Pex21p variants will be needed in order to identify the 

rigidity threshold of the hydrophobic core necessary for PTS2-cargo transport.  

Our crystal structure indicates that the N-terminal 44 residues of Pex7p allow protrusion of 

the bulge loop while simultaneously folding into a WD40-like structure to complete the rigid 

ȕ-propeller structure. This adaptation differentiates Pex7p from other WD40 proteins. The 



 19

bulge loop is essential not only to form a landmark for Pex21p but also to constitute a part of the 

binding site for PTS2. Among the single–amino acid substitutions in human Pex7p that cause 

RCDP123,24 (Supplementary Fig. 1a), substitutions of His39 (Asn31 in S. cerevisiae) to Pro, and 

Gly41 (Gly33 in S. cerevisiae) to Val, are mutations on the bulge loop. This fact, together with 

the results of our mutation analyses of Pex7p Phe32 and Leu34, imply that the conserved shape 

and the surface property of the bulge loop are required for Pex7p's function.  

The crystal structure suggests that Pex21p strengthens the binding of Pex7p to Fox3pN by 

directly attaching its C-terminal region onto the PTS2 binding site, rather than by some 

allosteric mechanism. We consider that this direct binding mechanism is not S. cerevisiae– 

specific but rather common to the co-receptor peroxins of other species, because the regions of 

Pex21p essential for formation of the recognition complex (Pex21p Į1, Į2, and Į3) are 

conserved among other co-receptor peroxins (Supplementary Fig. 1b). Pex21p Į1 is 

reminiscent of the finger loop of SRP5440, in that Pex21p Į1 forms a hydrophobic lid to cover 

the hydrophobic surface of PTS2 and stabilize the recognition complex. The importance of 

Pex21 Į1 can be derived from the result that Pex21p ǻC and ǻL mutants could restore growth 

of ǻpex18ǻpex21 on SCOT plates whereas Pex21p ǻĮ1 mutant couldn't. The 

Pex7p–Fox3pN-bound structure of Pex21pC is likely to be induced on the complex formation. 
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If Pex21pC is separated from Pex7p and Fox3pN in aqueous solution, the exposure of the 

hydrophobic residues and the lack of intra-molecular interactions will be unfavorable to 

maintenance of the elongated structure of Pex21pC.  

The crystal structure provides details regarding the complementarity between PTS2 and 

the receptor complex. Because PTS2 folds into an Į-helix, its hydrophobic key residues (Fox3p 

Leu5, Ile8, Leu12) fit into the hydrophobic groove formed by both Pex7p and Pex21p, and its 

hydrophilic key residues (Fox3p Arg4 and His11) fit into the hydrophilic groove on the top 

surface of Pex7p. Whereas the hydrophobic key residues of PTS2 are recognized mainly by 

spatial complementarity as parts of the hydrophobic core, the hydrophilic key residues of PTS2 

are recognized both by spatial complementarity and by formation of salt bridges and hydrogen 

bonds with Pex7p. Other helical N-terminal targeting signals, such as the signal peptide40 and 

mitochondrial targeting signal (MTS)41, also contain hydrophobic residues in their sequence 

motifs. However, the receptor proteins of the signal peptide and MTS (SRP54 and Tom20, 

respectively) do not recognize any hydrophilic residue as specifically as Pex7p–Pex21p does. 

The PTS2 system shares this characteristic with the PTS1 system, in which basic key residue of 

the PTS1 sequence motif (-[S/A/C]-[K/H/R]-[L/M]-CO2
í) is specifically recognized by 

Pex5p5,6. It is reported that a mutated PTS1 peptide (Leu-Gln-Ser-Glu-Leu) has an affinity for 
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Pex5p two orders of magnitude lower than that of the wild-type PTS1 peptide 

(Tyr-Gln-Ser-Lys-Leu)6. Consequently, both hydrophobic and hydrophilic key residues in 

PTS1 and PTS2 achieve their specific complementarity with the receptors.  

Our crystal structure supports several ideas presented in a recent modeling and mutational 

study of the human Pex7p–PTS2 complex25. That study proposed that PTS2 forms an 

amphipathic Į-helix and binds to the top surface of Pex7p, and that the hydrophilic key residues 

of PTS2 (Arg4 and His11 in S. cerevisiae Fox3p) interact with two glutamates in Pex7p 

(Glu106 and Glu222 in S. cerevisiae Pex7p). However, because their model did not contain a 

co-receptor peroxin, the bound surface of the modeled PTS2 helix is tilted compared with the 

crystal structure. In the crystal structure, Fox3p Arg4 interacts with Pex7p Asp61 in addition to 

Glu106, and Fox3p His11 mainly interacts with Pex7p Tyr178 and Tyr304 in addition to 

Glu222. This explains the previous finding that Arg substitution of Glu222 (Glu200 in human 

Pex7p) did not destroy the interaction completely, and that the corresponding mutant still 

partially complemented Pex7p deficiency25.  

The first reported structure of the PTS2-recognition complex, presented here, provides a 

structural framework for studying the import of PTS2-cargo into peroxisomes. Together with 

previous reports of the PTS1 system, these findings deepen our understanding of peroxisomal 
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protein transport and reveal differences between peroxisomal targeting signals and those that 

target proteins to other organelles. However, additional structures of PTS2-recognition 

complexes containing other PTS2 sequences or containing Pex7p and the co-receptor peroxin 

from other species will be required for a full understanding of the interactions among PTS2, 

Pex7p, and the co-receptor peroxin. 
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Accession codes. Protein Data Bank: Coordinates and structure factors have been deposited 

with accession code 3W15. 
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Figure legends 

Figure 1 

Structure of the Pex7p–Pex21pC–Fox3pN-MBP complex. (a) Schematic diagrams of the 

constructs used for crystallization. The color code here is used for all figures, unless 

otherwise noted. WD1–6 indicate WD40 motifs. ND, N-terminal conserved domain; WF, 

Wxxx[F/Y] Pex14p-binding motif; Pex7pBD, Pex7p-binding domain. (b) Skeleton 

representation of the hetero-trimer in the crystallographic asymmetric unit. (c) Ribbon and 

surface representations of the side view (left) and the top view (right) of the hetero-trimer 

Pex7p–Pex21pC–Fox3pN. Side chains of Arg4, Leu5, His11, and Leu12 are shown as stick 

models. The disordered loops (DLs) in Pex7p and Pex21pC are presented as dashed curves. 

The red arrow in the leftmost panel represents the viewpoint of the left panel in Fig. 3b and 

the viewpoint of Fig. 4c. Nt, N-terminus; Ct, C-terminus. 

 

Figure 2 

Cooperative complex formation of Fox3p, Pex7p, and Pex21pC. The results of pull-down 

experiments using glutathione sepharose resin (a) or amylose resin (b) to examine all 

combinations of complex formation between any two or all three of Fox3p, Pex7p, and 
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Pex21pC are shown. Proteins were mixed at 5 �M with 15 �l of resin in buffer. The input and 

bound fractions were analyzed by SDS-PAGE and stained with Coomassie Brilliant Blue. 

 

Figure 3 

Pex7p–Pex21pC receptor complex formation. (a) Open-book representation of Pex7p and 

Pex21pC. Pex7p is in the same orientation as in the right panel of Fig. 1c. Pex21pC is in the 

orientation rotated by 135° from the orientation in the right panel of Fig. 1c. Fox3pN is shown 

as a ribbon model in yellow, and the side-chains of Met1, Arg4, Leu5, Ile8, His11, and Leu12 

are shown to indicate its orientation. Electrostatic surfaces of Pex7p and Pex21pC were colored 

according to local surface properties using PyMOL with the APBS42 plugin. Surface regions of 

positive potential are colored blue, regions of negative potential red, and neutral regions white. 

The color ramp is from –3kT to +3kT, where k is the Boltzmann constant and T is the absolute 

temperature. The dashed boxes indicate the hydrophobic interfaces important for 

Pex7p–Pex21p complex formation. In particular, the dashed box on Pex7p indicates the 

hydrophobic ridge. The dashed circle indicates the bulge loop. (b) Residues forming 

hydrophobic interfaces between Pex7p and Pex21pC are shown in the left panel, and residues 

forming electrostatic interactions between Pex7p and Pex21pC in the right panel. The 
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viewpoint of the left panel is indicated in Fig. 1c by a red arrow, and the helix of Fox3pN is 

omitted from the left panel for clarity. Dashed black lines indicate possible hydrogen bonds. 

 

Figure 4 

Molecular recognition of key residues of PTS2. (a) The amphipathic Į-helix of Fox3pN. 

Hydrophobic residues are highlighted by underlines. (b) Stereo view of the PTS2 binding 

pocket. The side chains of Met1, Arg4, Leu5, Ile8, His11, and Leu12 of Fox3pN are shown. 

Dashed black lines indicate possible hydrogen bonds. (c) The surface of the PTS2-binding 

pocket is shown and colored according to the peptide chain (Pex21pC, light pink; Pex7p, pale 

green) in the left panel, and colored according to local electrostatic properties as in Fig. 3a in 

the right panel. The viewpoint is indicated in Fig. 1c by a red arrow. The dashed box indicates 

the hydrophobic groove, and the dashed ellipse indicates the hydrophilic groove. 

 

Figure 5 

Functional assays of Pex7p and Pex21p variants. (a, b) The results of pull-down experiments 

with amylose resin to examine the ability of variants of Pex21pC (a) and Pex7p (b) to form the 

ternary complex. (c) Growth assays of the S. cerevisiae strains on SCOT agar plates (oleic acid 
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is the only carbon source) or SCDT agar plates (glucose is the only carbon source). Ten-fold 

serial dilutions of the strains were spotted onto the agar plates and incubated at 30°C for one 

week (SCOT) or one day (SCDT). Approximate numbers of cells per spot are indicated. WT, 

wild type. 
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Table 1.  Data collection and refinement statistics 

 Pex7p(ǻ257–265)–Pex21pC–Fox3pN-MBP 

Data collection  

Space group P21 

Cell dimensions  

    a, b, c (Å) 78.9, 52.8, 97.6 

    α, β, γ  (°) 90, 106.6, 90 

Resolution (Å) 32.2–1.8 (1.90–1.80)* 

Rmerge  0.066 (0.199) 

I / σI 20.2 (8.8) 

Completeness (%) 99.8 (99.2) 

Redundancy 7.1 (6.9) 

  

Refinement  

Resolution (Å) 32.2–1.80 

No. reflections 67,828 

Rwork / Rfree  0.189/0.224  

No. atoms  

    Protein 6,219  

    Ligand/ion 42 

    Water 563 

B-factors  

    Protein 20.87 

    Ligand/ion 34.13 

    Water 26.45 

r.m.s. deviations  

    Bond lengths (Å) 0.008  

    Bond angles (°) 1.063  

*Values in parentheses are for the highest-resolution shell. 
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Online Methods 

Plasmids. The details of plasmids used in this study are described in Supplementary Note and 

Supplementary Table 1. 

 

Expression and purification of Pex7p and its variants. P. pastoris plasmids for expression of 

N-terminally GST-tagged Pex7p and its variants were linearized with PmeI (NEB) and 

transformed into P. pastoris strain SMD1163 (Invitrogen) as described43. Positive 

transformants were selected using YPD (1% yeast extract, 2% peptone, 2% dextrose) agar 

plates containing 300 �g mlí1 Zeocin. The colonies were grown at 30°C to an OD600 of 5 in 

YPD medium, and 20 ml of this culture was used to inoculate 1 l of methanol induction medium 

(1% methanol, 1% yeast extract, 1.5% peptone, 1.34% yeast nitrogen base with ammonium 

sulfate without amino acids, 0.5% sorbitol, 4×10í5% biotin) in 5-l baffled flasks. The cells were 

grown at 30°C with vigorous shaking. Methanol was added to a concentration of 0.7% after 16 

h of induction, and cells were harvested after additional culture for 4 h. 

Protein samples were kept at 4°C during all subsequent steps. Harvested cells (90 g) were 

suspended in 250 ml buffer A (30 mM Tris-HCl pH 7.5, 500 mM NaCl, 5% glycerol, 0.05% 

Tween 20, 1 mM DTT, 1 mM PMSF) and lysed with an Emulsiflex-C3 high-pressure 
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homogenizer (Avestin). Clarified lysate was incubated with 3 ml Glutathione Sepharose 4B 

resin (GE Healthcare) overnight. After washing the resin with 50 column volumes (CVs) of 

buffer B (30 mM Tris-HCl pH 7.5, 300 mM NaCl, 1 mM DTT), His6-tagged TEV protease was 

mixed with the resin and 1 CV of buffer B overnight to remove the GST-tag and release Pex7p 

from the resin. The supernatant was passed through 1 ml Ni-IMAC (Bio-Rad) column to 

remove TEV protease, and the unbound fraction containing Pex7p was applied to a HiLoad 

16/60 Superdex 200 pg gel filtration column (GE Healthcare) equilibrated with buffer B. Peak 

fractions containing Pex7p were pooled, concentrated with Amicon Ultra Centrifugal Filters 

(Millipore), flash-frozen in liquid nitrogen, and stored at –80°C. The yield of Pex7p was 0.4 mg 

per liter of culture. 

 

Expression and purification of Pex21pC, Fox3p, Fox3pN-MBP, and MBP-Pex21pC. E. 

coli BL21(DE3) cells transformed with plasmids for expression of N-terminally GST-tagged 

Pex21pC, Fox3p, or Fox3pN-MBP were grown in LB medium at 37°C to an OD600 of 0.6. 

Protein expression was induced with 0.5 mM IPTG for 4 h at 37°C. Harvested cells (10 g) were 

suspended in 80 ml buffer C (30 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT) containing 

1 mM PMSF and lysed by sonication on ice. Further purification after disruption of the cells 
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was performed using the same procedure as for purification of Pex7p described above, except 

that buffer C was used for washing the resin and gel filtration chromatography. Purified 

Pex21pC, Fox3p, and Fox3pN-MBP were concentrated in buffer C, flash-frozen, and stored at 

–80°C. The yield of Pex21pC, Fox3p, and Fox3pN-MBP were 2, 10, and >20 mg per liter of 

culture, respectively. 

E. coli BL21(DE3) cells transformed with plasmids for expression of C-terminally 

His6-tagged MBP-Pex21pC and its variants were cultured in the same way as cells expressing 

GST-tagged Pex21pC. Harvested cells (1 g) were suspended in 25 ml buffer B and lysed by 

sonication on ice. Clarified lysate was supplied with imidazole to a concentration of 20 mM and 

applied on 1 ml Ni-IMAC column. The resin was washed with 25 CVs of buffer B containing 

20 mM imidazole and MBP-Pex21pC was eluted with buffer B containing 400 mM imidazole. 

Eluted proteins were concentrated in buffer B, flash frozen and stored at –80°C.  

 

Crystallization of Pex7p(ǻ257–265)–Pex21pC–Fox3pN-MBP hetero-trimer. Purified 

Pex7p(ǻ257–265) (2 mg), Pex21pC (1 mg), and Fox3pN-MBP (4 mg) were mixed in 4 ml 

buffer B, incubated overnight at 4°C, and subjected to gel filtration chromatography on a 

HiLoad 16/60 Superdex 200 pg column with buffer C. The peak fractions containing the ternary 



 36

complex were confirmed by SDS-PAGE, and concentrated in buffer C to 14 mg ml–1. Crystals 

were grown at 20°C by hanging-drop vapor diffusion, mixing 1 �l of the protein solution and 1 

�l of the reservoir solution containing 25% PEG2000, 0.3 M magnesium nitrate, and 0.1 M 

Tris-HCl (pH 7.7). Plate crystals appeared in a week and reached their maximal size (0.5 × 0.2 

× 0.02 mm) within one month.  

 

Data collection and structure determination. The crystals were serially transferred to 

cryoprotectant solutions (25–35% PEG2000, 0.1 M NaCl, 0.3 M magnesium nitrate, 0.1 M 

Tris-HCl pH 7.5) and soaked in the final solution for 1 h before flash-freezing in liquid nitrogen. 

A 1.8-Å resolution dataset was collected from a single crystal at 100 K at the SPring-8 beamline 

BL41XU at a wavelength of 1.0000 Å and processed using the iMOSFLM44 and CCP4 

software45. Initial phases were solved by molecular replacement with PHASER46, using crystal 

structures of MBP (PDB entry 1OMP) and human WDR5 (PDB entry 2H13) as search models. 

ARP/wARP47 was used to build the initial model. Incomplete parts of the model were manually 

built using Coot48 and refined using REFMAC549 to R/Rfree values of 0.189/0.224 at 1.8 Å 

resolution. As validated with MolProbity50, 97.8% of the residues were in the favored region of 

the Ramachandran plot, and the rest were in the allowed region. Data collection and refinement 
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statistics are summarized in Table 1. All structural figures were generated using PyMOL 

(http://www.pymol.org). PISA51 was used to analyze intermolecular interactions and to 

calculate the surface areas.  

 

GST- and MBP-pull-down experiments. Proteins were diluted to 5 �M each in 100 �l of 

buffer B containing 0.01% Tween 20. Four-fifths of the mixture was incubated with 15 �l of 

Glutathione Sepharose 4B resin or amylose resin (NEB) at 4°C for 1 h, and the remaining 20 �l 

was kept as the input fraction and mixed with 5 �l of 5× sample buffer. The resin was washed 

three times with 500 �l buffer B containing 0.01% Tween 20, and the bound fraction was eluted 

by mixing the resin with 30 �l 2× sample buffer. The input fraction and the bound fractions 

were analyzed by SDS-PAGE and stained with Coomassie Brilliant Blue. 

 

S. cerevisiae strains and complementation assays. All S. cerevisiae strains used in this study 

were generated from strain BY20134 (W303-1A background), which was provided by the 

National Bio-Resource Project (NBRP) of the MEXT, Japan. Gene deletion was performed 

using the one-step PCR method as described52. PEX7 was replaced with the URA3 gene to 

generate strain ǻpex7. PEX21 and PEX18 were replaced serially with the LEU2 and HIS3 genes, 
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respectively, to generate strain ǻpex18ǻpex21. All deletions were confirmed by colony PCR on 

genomic DNA. Plasmids were transformed into BY20134, ǻpex7, and ǻpex18ǻpex21 strains as 

described53, and transformants were selected on SCD (0.67% yeast nitrogen base with 

ammonium sulfate without amino acids, 2% dextrose supplemented with amino acids, adenine, 

and uracil) agar plates lacking the appropriate amino acids and/or uracil. BY20134 strain 

transformed with pAG304-Fox3pN-EGFP/mCherry-PTS1 is referred as BY20134EM. The list 

of all S. cerevisiae strains used in this study is presented on Supplementary Table 2. 

Growth assays of S. cerevisiae strains were performed as described previously26 with 

minor modifications. The cells of each strain were grown at 30°C to an OD600 of 2 in SCEO 

medium (0.67% yeast nitrogen base with ammonium sulfate without amino acids, 2% (v/v) 

ethanol, 0.1% (w/v) oleic acid, 0.4% (w/v) Tween 40, appropriate amino acids, uracil, and 

adenine). The cells were washed with distilled water and applied at ten-fold serial dilutions to 

SCOT (0.67% yeast nitrogen base with ammonium sulfate without amino acids, 0.1% (w/v) 

oleic acid, 0.4% (w/v) Tween 40, amino acids, uracil, and adenine) and SCDT (0.67% yeast 

nitrogen base with ammonium sulfate without amino acids, 2% dextrose, 0.4% (w/v) Tween 40, 

amino acids, uracil, and adenine) agar plates and incubated at 30°C. Aliquots of the cells were 

also used for western blotting (Supplementary Fig. 5b and Supplementary Note) and 
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visualization on a confocal fluorescence microscope (A1, Nikon). 
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Supplementary Figure 1   

Amino acid sequence alignments and conserved residues.  

 



 

Sequence alignments of (a) six Pex7p homologs, and (b) the homologous regions of 

co-receptor peroxins for PTS2 and Pex7p binding. Sc, Saccharomyces cerevisiae; Pp, 

Pichia pastoris; At, Arabidopsis thaliana; Dd, Dictyostelium discoideum; Xt, Xenopus 

tropicalis; Hs, Homo sapiens; Yl, Yarrowia lipolytica; Nc, Neurospora crassa. 

Alignments were performed with ClustalW 1.831 and manually adjusted. Residues that 

are identical in all sequences are shaded red, and residues that only have conserved 

substitutions are shaded yellow. Secondary-structure elements and residue numbering 

of Pex7p and Pex21pC are indicated above the alignments. Point mutations of human 

Pex7p that cause RCDP12,3 are indicated below the sequence of HsPex7p. In (a, b), “.” 

indicates a residue missing electron density; “X” indicates a residue deleted to 

optimize crystal quality. Down-pointing triangles indicate the interface residues, and 

are colored as follows: residues of Pex7p and Pex21p that only interact with Fox3pN 

are yellow; residues of Pex7p that interact with Pex21p are red; residues of Pex7p that 

interact with both Fox3pN and Pex21p are purple; residues of Pex21p that interact with 

Pex7p are green; and residues of Pex21p that interact with both Fox3pN and Pex7p 

are cyan. Blue-boxed regions in (b) indicate the Pex14p-binding motif. (c) Surface 

representation of Pex21pC and Pex7p. The surfaces of conserved residues are 

highlighted as in (a, b) according to their conservation. 



 

Supplementary Figure 2 

Fox3p binds to Pex7p with higher affinity in the lower salt environment.  

 

 
 

Pull-down experiments were performed using glutathione sepharose resin under the 

procedure described in the Online Methods section. Proteins were diluted to 5 µM in 

buffers containing 50 mM Tris-HCl pH 7.5 and different concentrations of NaCl, Tween 

20, and Triton X-100 indicated in the figure. The input and bound fractions were 

analyzed by SDS-PAGE and stained with Coomassie Brilliant Blue. The buffer 

composition for the experiment of lane 6 was based on the solution A described 

previously4. 

 



 

Supplementary Figure 3 

Electron-density maps around the PTS2-recognition site.  

 

 
 

(a) The same ribbon presentation as in Fig. 1c, right. Boxes indicate the regions 

enlarged in (b, c, d). (b–d) Atomic models are shown as stick models. Oxygen atoms 

are colored red, nitrogen blue, sulfur green, and carbon atoms according to the peptide 

chain (Pex7p, lime green; Pex21pC, light magenta; Fox3pN, yellow). Electron-density 

maps (2Fo-Fc density contoured at 1σ) are shown as meshes. Residues are labeled 

according to the peptide chain (Pex7p, black; Pex21pC, light magenta; Fox3pN, 

yellow). 



 

Supplementary Figure 4 

Single-molecule structures of Pex7p and Pex21pC.  

 

 

 

(a) Ribbon representation of Pex7p. The left molecule is in the same orientation as in 

Fig. 1c, right. (b) Structural alignment of the N-terminal 44 residues (blue and orange) 

of Pex7p with the other six WD40 motifs (lime green). The main chains are traced as 

sticks. (c) Ribbon representation of Pex21pC. The left molecule is in the same 

orientation as in Fig. 1c, right. Nt, N-terminus; Ct, C-terminus; DL, disordered loop. 



 

Supplementary Figure 5 

In vivo Fox3pN-EGFP transport assays. 

 



 

(a) The S. cerevisiae strains were grown in SCEO medium to an OD600 of 2, and live 

cells were examined with a confocal fluorescence microscopy. The intracellular 

localizations of Fox3pN-EGFP and mCherry-PTS1 were visualized by their 

fluorescence. The red spots of mCherry-PTS1 indicate the locations of peroxisomes, 

and the yellow spots in the merged fluorescence image indicate the co-localization of 

Fox3pN-EGFP and mCherry-PTS1. The scale bars in the differential interference 

contrast (DIC) images represent 5 µm. (b) The expression levels of Pex7p, Pex21p, 

and Fox3p variants were confirmed by western blotting. Pex7p and Pex21p variants 

contained His6-tags at their C-termini, and were detected by western blotting using 

penta-His-specific HRP conjugate antibody. Fox3p variants contained FLAG-tags at 

their C-termini, and were detected using FLAG-specific antibody. NS indicates 

non-specific S. cerevisiae proteins, which bound to Ni-IMAC resin and were detected 

by the penta-His-specific HRP conjugate antibody. WT, wild type. 

 

 



 

Supplementary Table 1 
Plasmids used in this study. 

Plasmid Description Source 

pAG425GPD-ccdB-HA LEU2, 2µ, AmpR Addgene 

pAG426GPD-ccdB-HA URA3, 2µ, AmpR Addgene 

pAG304GPD-ccdB-EGFP TRP1, AmpR Addgene 

pAG303GPD-ccdB-HA HIS3, AmpR Addgene 

pmCherry AmpR, mCherry-tag Clontech 

pAG304-Fox3pN-EGFP/mCherry-

PTS1 

FOX3 promoter driving FOX3N-EGFP, GPD 

promoter driving MCHERRY-SKL, TRP1, AmpR 
This study 

pAG425-Pex7p 
PEX7 promoter driving PEX7-His6, LEU2, 2µ, 

AmpR 
This study 

pAG425-Pex7p(L34A) 
PEX7 promoter driving pex7(L34A)-His6, LEU2, 

2µ, AmpR 
This study 

pAG425-Pex7p(L34D) 
PEX7 promoter driving pex7(L34D)-His6, LEU2, 

2µ, AmpR 
This study 

pAG425-Pex7p(F32A L34A) 
PEX7 promoter driving pex7(F32A L34A)-His6, 

LEU2, 2µ, AmpR 
This study 

pAG425-Pex7p(F344A) 
PEX7 promoter driving pex7(F344A)-His6, 

LEU2, 2µ, AmpR 
This study 

pAG425-Pex7p(F344A W364A) 
PEX7 promoter driving pex7(F344A 

W364A)-His6, LEU2, 2µ, AmpR 
This study 

pAG425-Pex7p(D61R E106H) 
PEX7 promoter driving pex7(D61R 

E106H)-His6, LEU2, 2µ, AmpR 
This study 

pAG425-Pex7p(Y178R Y304R) 
PEX7 promoter driving pex7(Y178R 

Y304R)-His6, LEU2, 2µ, AmpR 
This study 

pAG303-Fox3p 
FOX3 promoter driving FOX3-FLAG, HIS3, 

AmpR 
This study 

pAG303-Fox3p(R4E) 
FOX3 promoter driving fox3(R4E)-FLAG, HIS3, 

AmpR 
This study 



 

pAG303-Fox3p(H11E) 
FOX3 promoter driving fox3(H11E)-FLAG, 

HIS3, AmpR 
This study 

pAG426-Pex21p 
PEX21 promoter driving PEX21-His6, URA3, 

2µ, AmpR 
This study 

pAG426-Pex21p(I202D) 
PEX21 promoter driving pex21(I202D)-His6, 

URA3, 2µ, AmpR 
This study 

pAG426-Pex21p(I206D) 
PEX21 promoter driving pex21(I206D)-His6, 

URA3, 2µ, AmpR 
This study 

pAG426-Pex21p(K230E) 
PEX21 promoter driving pex21(K230E)-His6, 

URA3, 2µ, AmpR 
This study 

pAG426-Pex21p(F236A) 
PEX21 promoter driving pex21(F236A)-His6, 

URA3, 2µ, AmpR 
This study 

pAG426-Pex21p(F236D) 
PEX21 promoter driving pex21(F236D)-His6, 

URA3, 2µ, AmpR 
This study 

pAG426-Pex21p(Δ197-211) 
PEX21 promoter driving pex21(Δ197-211)-His6, 

URA3, 2µ, AmpR 
This study 

pAG426-Pex21p(Δ214-229) 
PEX21 promoter driving pex21(Δ214-229)-His6, 

URA3, 2µ, AmpR 
This study 

pAG426-Pex21p(Δ247-288) 
PEX21 promoter driving pex21(Δ247-288)-His6, 

URA3, 2µ, AmpR 
This study 

pPICZA ZeocinR Invitrogen 

pGEX-6P-1 AmpR, GST-tag, PreScission protease site 
GE 

Healthcare 

pMAL-c2E AmpR, MBP2-tag, Enterokinase site NEB 

pGEX6PT 
AmpR, GST-tag, PreScission protease site, TEV 

protease site 
This study 

pGEX6PT-Pex7p tac promoter driving GST-PEX7, AmpR This study 

pGEX6PT-Pex21pC tac promoter driving GST-PEX21C, AmpR This study 

pGEX6PT-Fox3p tac promoter driving GST-FOX3, AmpR This study 

pGEX6PT-Fox3pN-MBP tac promoter driving GST-FOX3N-MBP, AmpR This study 



 

 

pPICZA-GST-Pex7p AOX1 promoter driving GST-PEX7, ZeocinR This study 

pPICZA-GST-Pex7p(Δ257-265) 
AOX1 promoter driving GST-PEX7(Δ257-265), 

ZeocinR 
This study 

pPICZA-GST-Pex7p(F32A) 
AOX1 promoter driving GST-PEX7(F32A), 

ZeocinR 
This study 

pPICZA-GST-Pex7p(L34A) 
AOX1 promoter driving GST-PEX7(L34A), 

ZeocinR 
This study 

pPICZA-GST-Pex7p(L34D) 
AOX1 promoter driving GST-PEX7(L34D), 

ZeocinR 
This study 

pPICZA-GST-Pex7p(F32A L34A) 
AOX1 promoter driving GST-PEX7(F32A 

L34A), ZeocinR 
This study 

pPICZA-GST-Pex7p(F344A) 
AOX1 promoter driving GST-PEX7(F344A), 

ZeocinR 
This study 

pPICZA-GST-Pex7p(F344A 

W364A) 

AOX1 promoter driving GST-PEX7(F344A 

W364A), ZeocinR 
This study 

pMEXT-Pex21pC tac promoter driving MBP-PEX21C-His6, AmpR This study 

pMEXT-Pex21pC(I202D) 
tac promoter driving MBP-PEX21C(I202D)-His6, 

AmpR 
This study 

pMEXT-Pex21pC(I206D) 
tac promoter driving MBP-PEX21C(I206D)-His6, 

AmpR 
This study 

pMEXT-Pex21pC(K230E) 
tac promoter driving 

MBP-PEX21C(K230E)-His6, AmpR 
This study 

pMEXT-Pex21pC(F236A) 
tac promoter driving 

MBP-PEX21C(F236A)-His6, AmpR 
This study 

pMEXT-Pex21pC(F236D) 
tac promoter driving 

MBP-PEX21C(F236D)-His6, AmpR 
This study 

pMEXT-Pex21pC(Δ197-211) 
tac promoter driving 

MBP-PEX21C(Δ197-211)-His6, AmpR 
This study 

pMEXT-Pex21pC(Δ214-229) 
tac promoter driving 

MBP-PEX21C(Δ214-229)-His6, AmpR 
This study 

pMEXT-Pex21pC(Δ247-288) 
tac promoter driving 

MBP-PEX21C(Δ247-288)-His6, AmpR 
This study 



 

Supplementary Table 2  
Yeast strains used in this study. 

S. cerevisiae Strain Genotype Source 

BY20134 (W303-1A) 
MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535  
NBRP 

BY20134EM 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1] 

This study 

Δpex7 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1] 

This study 

Δpex18Δpex21 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1] 

This study 

Δpex7 + Pex7p WT 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3;  

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p)] 

This study 

Δpex7 + 

Pex7p L34A 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3;  

[pAG304-Fox3pN-EGFP/mCherry-PTS1)], 

[pAG425-Pex7p(L34A)] 

This study 

Δpex7 + 

Pex7p L34D 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3;  

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(L34D)] 

This study 

Δpex7 + 

Pex7p F32A L34A 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(F32A L34A)] 

This study 

Δpex7 + 

Pex7p F344A 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3;  

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(F344A)] 

This study 



 

Δpex7 + 

Pex7p F344A W364A 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3;  

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(F344A W364A)] 

This study 

Δpex7 + 

Pex7p D61R E106H 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(D61R E106H)] 

This study 

Δpex7 + 

Pex7p Y178R Y304R  

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3;  

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(Y178R Y304R)] 

This study 

Δpex7 + 

Pex7p D61R E106H, 

Fox3p R4E 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3;  

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(D61R E106H)], [pAG303-Fox3p(R4E)] 

This study 

Δpex7 + 

Pex7p Y178R Y304R, 

Fox3p H11E 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(Y178R Y304R)], [pAG303-Fox3p(H11E)] 

This study 

Δpex7 + 

Pex7p D61R E106H, 

Fox3p H11E 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(D61R E106H)], [pAG303-Fox3p(H11E)] 

This study 

Δpex7 + 

Pex7p Y178R Y304R, 

Fox3p R4E 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex7::URA3; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG425-Pex7p(Y178R Y304R)], [pAG303-Fox3p(R4E)] 

This study 

Δpex18Δpex21 + Pex21p 

WT 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG426-Pex21p] 

This study 



 

Δpex18Δpex21 + Pex21p 

I202D 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG426-Pex21p(I202D)] 

This study 

Δpex18Δpex21 + Pex21p 

I206D 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG426-Pex21p(I206D)] 

This study 

Δpex18Δpex21 + Pex21p 

K230E 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG426-Pex21p(K230E)] 

This study 

Δpex18Δpex21 + Pex21p 

F236A 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG426-Pex21p(F236A)] 

This study 

Δpex18Δpex21 + Pex21p 

F236D 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG426-Pex21p(F236D)] 

This study 

Δpex18Δpex21 + Pex21p 

Δα1 (Δ197-211) 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG426-Pex21p(Δ197-211)] 

This study 

Δpex18Δpex21 + Pex21p 

ΔL (Δ214-229) 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG426-Pex21p(Δ214-229)] 

This study 

Δpex18Δpex21 + Pex21p 

ΔC (Δ247-288) 

MATa; ade2-1; can1-100; his3-11,15; leu2-3,112; trp1-1; 

ura3-1; rad5-535; pex18::HIS3; pex21::LEU2; 

[pAG304-Fox3pN-EGFP/mCherry-PTS1], 

[pAG426-Pex21p(Δ247-288)] 

This study 



 

 

P. pastoris Strain Genotype Source 

SMD1163 his4; pep4; prb1 Invitrogen 

SMD1163 + GST-Pex7p his4; pep4; prb1; [pPICZA-GST-Pex7p] This study 

SMD1163 + 

GST-Pex7p(Δ257-265) 
his4; pep4; prb1; [pPICZA-GST-Pex7p(Δ257-265)] This study 

SMD1163 + 

GST-Pex7p(F32A) 
his4; pep4; prb1; [pPICZA-GST-Pex7p(F32A)] This study 

SMD1163 + 

GST-Pex7p(L34A) 
his4; pep4; prb1; [pPICZA-GST-Pex7p(L34A)] This study 

SMD1163 + 

GST-Pex7p(L34D) 
his4; pep4; prb1; [pPICZA-GST-Pex7p(L34D)] This study 

SMD1163 + 

GST-Pex7p(F32A L34A) 
his4; pep4; prb1; [pPICZA-GST-Pex7p(F32A L34A)] This study 

SMD1163 + 

GST-Pex7p(F344A) 
his4; pep4; prb1; [pPICZA-GST-Pex7p(F344A)] This study 

SMD1163 + 

GST-Pex7p(F344A 

W364A) 

his4; pep4; prb1; [pPICZA-GST-Pex7p(F344A W364A)] This study 



 

Supplementary Note 

Plasmids 

Escherichia coli expression plasmids for expression of Pex21pC, Fox3p, and 

Fox3pN-MBP as TEV-cleavable N-terminal GST-tagged proteins were constructed as 

follows. Expression vector pGEX6PT was created by modifying pGEX-6P-1 (GE 

Healthcare) by inserting a sequence (5'-GGATCTGGTACCGAAAACCTG 

TACTTCCAG-3') that encodes linker residues (Gly-Ser-Gly-Thr) and a TEV protease 

cleavage site (Glu-Asn-Leu-Tyr-Phe-Gln), immediately upstream of the BamHI site of 

pGEX-6P-1. Coding sequences of Saccharomyces cerevisiae Pex21pC and Fox3p 

were amplified by PCR from yeast genomic DNA and inserted between the BamHI and 

SalI sites of pGEX6PT to obtain pGEX6PT-Pex21pC and pGEX6PT-Fox3p. 

Expression vector pGEX6PT-Fox3pN-MBP was constructed by replacing the coding 

sequence of Fox3p residues 16–417 of pGEX6PT-Fox3p with a linker (5'-AGATCC-3') 

followed by the coding sequence of E. coli MalE residues 27–396 (MBP), which was 

cloned from E. coli BL21(DE3) (Invitrogen) genomic DNA.  

Pichia pastoris expression plasmids for expression of TEV-cleavable N-terminal 

GST-tagged Pex7p and its variants were constructed as follows. The coding sequence 

of S. cerevisiae Pex7p was amplified by PCR from S. cerevisiae genomic DNA and 

inserted between the BamHI and SalI sites of pGEX6PT. Next, the coding sequence of 

GST-Pex7p from pGEX6PT-Pex7p was subcloned into the pPICZA expression vector 

(Invitrogen) between the EcoRI and SalI sites to yield pPICZA-GST-Pex7p. The 

plasmids for expression of Pex7p variants were created by site-directed mutagenesis 

of pPICZA-GST-Pex7p using a modified PCR method as described5. 

E. coli plasmids for expression of C-terminally His6-tagged MBP-Pex21pC and its 

variants were constructed as follows. The plasmid pMEXT-Pex21pC was generated 

from pGEX6PT-Pex21pC by adding the coding sequence of the His6-tag after the 

coding sequence of Pex21pC using an modified inverse PCR method6 and 

exchanging the coding sequence of GST 

(5'-GTATTCATGTCCCCTATACT...TCCAGGGGCCCCTGGGATCT-3') for MBP  



 

(5'-CATATGAAAACTGAAGAAGG...ACAATAACAACAACGGGCCC-3'), which was 

subcloned from pMAL-c2E (NEB). Deletions and point mutations were introduced to 

pMEXT-Pex21pC using site-directed mutagenesis as described above.  

S. cerevisiae plasmid pAG425-Pex7p was constructed by amplifying the PEX7 

ORF plus 440 bp of upstream sequence from S. cerevisiae genomic DNA, inserting 

the resulting amplicon between the SacI and HindIII sites of pAG425GPD-ccdB-HA7 

(Addgene), and replacing the coding sequence of the HA3-tag 

(5'-ATGTACCCATACGATGTTCCTGACTATGCGGGCTATCCCTATGACGTCCCGG

ACTATGCAGGATCCTATCCATATGACGTTCCAGATTACGCTGCTCAGTGC-3') with 

that of the His6-tag (5'-CATCATCATCATCATCAT-3') by the inverse PCR method 

described above. Likewise, pAG426-Pex21p was constructed by amplifying the 

PEX21 ORF plus 520 bp of upstream sequence, inserting this amplicon between the 

SacI and HindIII sites of pAG426GPD-ccdB-HA7 (Addgene), and replacing the coding 

sequence of the HA3-tag with that of the His6-tag. Expression of His6-tagged Pex7p 

and Pex21p was regulated under control of their original promoters and the CYC1 

terminator. Plasmids expressing variants of Pex7p and Pex21p were generated by the 

site-directed mutagenesis described above.  

S. cerevisiae integrating plasmid pAG303-Fox3p was constructed by amplifying 

the FOX3 ORF plus 380 bp of upstream sequence from S. cerevisiae genomic DNA, 

inserting this amplicon between the SacI and XhoI sites of pAG303GPD-ccdB-HA7 

(Addgene), and inserting the coding sequence of FLAG-tag (5'-GATTATAAAGATGAT 

GATGATAAG-3') after the coding sequence of Fox3p by the inverse PCR method 

described above. Plasmids expressing the variants of Fox3p were generated by the 

site-directed mutagenesis described above. 

Bicistronic S. cerevisiae integrating plasmid 

pAG304-Fox3pN-EGFP/mCherry-PTS1 was constructed to enable simultaneous 

expression of Fox3pN-EGFP and mCherry-SKL. This plasmid was generated by 

replacing the DNA sequence between SacI and KpnI site of 

pAG304GPD-ccdB-EGFP7 (Addgene) with tandem expression cassettes for 

Fox3pN-EGFP and mCherry-SKL. The coding sequence of Fox3pN-EGFP was placed 



 

between the S. cerevisiae FOX3 promoter (upstream 380-bp regulatory region of 

FOX3) and the CYC1 terminator, and the coding sequence of mCherry-SKL was 

placed between GPD promoter and the CYC1 terminator. The cDNA of mCherry was 

amplified from the pmCherry vector (Clontech). 

All the constructs were verified by DNA sequencing before being used for protein 

expression. The list of all plasmids used in this study is presented in Supplementary 

Table 1. 

 

Western blotting 

S. cerevisiae cells (0.2 g) grown in SCEO medium (0.67% yeast nitrogen base 

with ammonium sulfate without amino acids, 2% (v/v) ethanol, 0.1% (w/v) oleic acid, 

0.4% (w/v) Tween 40, appropriate amino acids, uracil, and adenine) to an OD600 of 2 

were suspended in 300 µl buffer B (30 mM Tris-HCl pH 7.5, 300 mM NaCl, 1 mM DTT) 

containing 1 mM PMSF and lysed by vortexing with glass beads. Cleared lysate (350 

µl) was supplemented with imidazole to a concentration of 20 mM and incubated with 

15 µl Ni-IMAC resin for 1 h at 4°C. After washing the resin three times with 500 µl 

buffer B containing 20 mM imidazole, proteins were eluted with 20 µl buffer B 

containing 400 mM imidazole. C-terminally His6-tagged Pex7p and Pex21p variants 

were detected by subjecting 5 µl eluted fraction to SDS-PAGE and western blotting 

using Penta-His HRP Conjugate (QIAGEN). C-terminally FLAG-tagged Fox3p variants 

were detected by subjecting cell lysate containing 30 µg protein to SDS-PAGE and 

western blotting using anti-FLAG antibody M2 (Sigma) and anti-mouse IgG 

HRP-linked antibody (GE Healthcare). 
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