1,498 research outputs found
Open source solution approaches to a class of stochastic supply chain problems
This research proposes a variety of solution approaches to a class of stochastic supply chain problems, with normally distributed demand in a certain period of time in the future. These problems aim to provide the decisions regarding the production levels; supplier selection for raw materials; and optimal order quantity. The typical problem could be formulated as a mixed integer nonlinear program model, and the objective function for maximizing the expected profit is expressed in an integral format. In order to solve the problem, an open source solution package BONMIN is first employed to get the exact optimum result for small scale instances; then according to the specific feature of the problem a tailored nonlinear branch and bound framework is developed for larger scale problems through the introduction of triangular approximation approach and an iterative algorithm. Both open source solvers and commercial solvers are employed to solve the inner problem, and the results to larger scale problems demonstrate the competency of introduced approaches. In addition, two small heuristics are also introduced and the selected results are reported
Policy Analysis of Agricultural Water Fee Collection in China
AbstractThe low collection rate of agricultural irrigation water fee is a common problem facing many developing countries, which has also troubled China since the 2000s. In different areas of China, there are two problem-solving strategies: raising water collection rate or exempting water fee. In this paper, we analyze the dilemma of China's agricultural water fee collection from both practical and theoretical perspective. We argue that China will not follow up one single model in agricultural water fee collection and each local government should explore appropriate policy in line with their own situation
Plug-and-Play Methods Provably Converge with Properly Trained Denoisers
Plug-and-play (PnP) is a non-convex framework that integrates modern
denoising priors, such as BM3D or deep learning-based denoisers, into ADMM or
other proximal algorithms. An advantage of PnP is that one can use pre-trained
denoisers when there is not sufficient data for end-to-end training. Although
PnP has been recently studied extensively with great empirical success,
theoretical analysis addressing even the most basic question of convergence has
been insufficient. In this paper, we theoretically establish convergence of
PnP-FBS and PnP-ADMM, without using diminishing stepsizes, under a certain
Lipschitz condition on the denoisers. We then propose real spectral
normalization, a technique for training deep learning-based denoisers to
satisfy the proposed Lipschitz condition. Finally, we present experimental
results validating the theory.Comment: Published in the International Conference on Machine Learning, 201
Study of Deformation-Compensated Modeling for Flexible Material Path Processing Based on Fuzzy Neural Network and Fuzzy Clustering
In this paper, the Flexible Material Path Processing (FMPP) deformation compensation modeling method based on T-S fuzzy neural network is proposed. This method combined with T S fuzzy reasoning and fuzzy neural network.Firstly, fuzzy clustering is introduced to extract fuzzy membership functions and the fitness of fuzzy rules of T S fuzzy neural network antecedent from historical processing data; secondly, through back-propagation iteration to calculate connection weights of the network. Processing experiments shows that T S fuzzy neural network modeling in this paper is superior to typical T S model,the angle error and straightness error processing by NTS FNN is decreased than these of STS FNN
A single-chip real-Time range finder
Range finding are widely used in various industrial applications, such as machine vision, collision avoidance, and robotics. Presently most range finders either rely on active transmitters or sophisticated mechanical controllers and powerful processors to extract range information, which make the range finders costly, bulky, or slowly, and limit their applications. This dissertation is a detailed description of a real-time vision-based range sensing technique and its single-chip CMOS implementation. To the best of our knowledge, this system is the first single chip vision-based range finder that doesn't need any mechanical position adjustment, memory or digital processor. The entire signal processing on the chip is purely analog and occurs in parallel. The chip captures the image of an object and extracts the depth and range information from just a single picture. The on-chip, continuous-time, logarithmic photoreceptor circuits are used to couple spatial image signals into the range-extracting processing network. The photoreceptor pixels can adjust their operating regions, simultaneously achieving high sensitivity and wide dynamic range. The image sharpness processor and Winner-Take-All circuits are characterized and analyzed carefully for their temporal bandwidth and detection performance. The mathematical and optical models of the system are built and carefully verified. A prototype based on this technique has been fabricated and tested. The experimental results prove that the range finder can achieve acceptable range sensing precision with low cost and excellent speed performance in short-to-medium range coverage. Therefore, it is particularly useful for collision avoidance
MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks
Some recent works revealed that deep neural networks (DNNs) are vulnerable to
so-called adversarial attacks where input examples are intentionally perturbed
to fool DNNs. In this work, we revisit the DNN training process that includes
adversarial examples into the training dataset so as to improve DNN's
resilience to adversarial attacks, namely, adversarial training. Our
experiments show that different adversarial strengths, i.e., perturbation
levels of adversarial examples, have different working zones to resist the
attack. Based on the observation, we propose a multi-strength adversarial
training method (MAT) that combines the adversarial training examples with
different adversarial strengths to defend adversarial attacks. Two training
structures - mixed MAT and parallel MAT - are developed to facilitate the
tradeoffs between training time and memory occupation. Our results show that
MAT can substantially minimize the accuracy degradation of deep learning
systems to adversarial attacks on MNIST, CIFAR-10, CIFAR-100, and SVHN.Comment: 6 pages, 4 figures, 2 table
Deformation-compensated modeling of flexible material processing based on T-S fuzzy neural network and fuzzy clustering
According to the factors that influence flexible material processing (FMP), the deformation compensation modeling method based on T-S fuzzy neural network is proposed. This method combines T-S fuzzy reasoning with a fuzzy neural network. Firstly, fuzzy clustering is introduced to extract fuzzy membership functions and the fitness of fuzzy rules of T-S fuzzy neural network antecedent from the past processing data. Secondly, with the steepest descent method, back-propagation iteration is used to calculate the connection weights of the network. The processing of experiments shows that T-S fuzzy neural network modeling is superior to typical T-S model. The angle error and the straightness error processed by NTS-FNN is 40.4 %, 28.8 % lower than those of STS-FNN. The minimum processing time processed by NTS-FNN is lower by 46.1 % than that of STS-FNN
Effect of Bovine Respiratory Disease on the Respiratory Microbiome: A Meta-Analysis
Background: Bovine respiratory disease (BRD) is the most devastating disease affecting beef and dairy cattle producers in North America. An emerging area of interest is the respiratory microbiome’s relationship with BRD. However, results regarding the effect of BRD on respiratory microbiome diversity are conflicting.
Results: To examine the effect of BRD on the alpha diversity of the respiratory microbiome, a meta-analysis analyzing the relationship between the standardized mean difference (SMD) of three alpha diversity metrics (Shannon’s Diversity Index (Shannon), Chao1, and Observed features (OTUs, ASVs, species, and reads) and BRD was conducted. Our multi-level model found no difference in Chao1 and Observed features SMDs between calves with BRD and controls. The Shannon SMD was significantly greater in controls compared to that in calves with BRD. Furthermore, we re-analyzed 16S amplicon sequencing data from four previously published datasets to investigate BRD’s effect on individual taxa abundances. Additionally, based on Bray Curtis and Jaccard distances, health status, sampling location, and dataset were all significant sources of variation. Using a consensus approach based on RandomForest, DESeq2, and ANCOM-BC2, we identified three differentially abundant amplicon sequence variants (ASVs) within the nasal cavity, ASV5_Mycoplasma, ASV19_Corynebacterium, and ASV37_Ruminococcaceae. However, no ASVs were differentially abundant in the other sampling locations. Moreover, based on SECOM analysis, ASV37_Ruminococcaceae had a negative relationship with ASV1_Mycoplasma_hyorhinis, ASV5_Mycoplasma, and ASV4_Mannheimia. ASV19_Corynebacterium had negative relationships with ASV1_Mycoplasma_hyorhinis, ASV4_Mannheimia, ASV54_Mycoplasma, ASV7_Mycoplasma, and ASV8_Pasteurella.
Conclusions: Our results confirm a relationship between bovine respiratory disease and respiratory microbiome diversity and composition, which provide additional insight into microbial community dynamics during BRD development. Furthermore, as sampling location and sample processing (dataset) can also affect results, consideration should be taken when comparing results across studies
- …