38 research outputs found

    Aseismic fracturing and cataclasis involving reaction softening within core material from the Cajon Pass Drill Hole

    Get PDF
    Cataclastic deformation features in crystalline rocks from the Cajon Pass drill hole, located some 4 km NE of the San Andreas fault trace in southern California, appear to have developed at slow strain rates. There is no clear evidence of seismic deformation. Most of the observed structures and microstructures are inferred to have formed during pre-Pliocene distributed deformation, before the San Andreas fault became active in this area. Extension fractures are filled by laumontite which increases in grain size from a fine amorphous habit to coarser prismatic crystals unidirectionally across fractures and does not generally display crack-seal textures. Fragments within fractures were derived from adjacent grains without rotation or shear. Fracture opening and cementation were therefore synchronous and slow. Fluids were present at all times during fracture opening, but there was no repeated hydrofracturing after fracture formation. However pore fluid pressures probably stayed close to the least principal stress (σ3) during subsequent fracture growth. Plagioclase compositions in all fractured areas change from oligoclase to albite or anorthite as a consequence of albitization and laumontization. Particle size distributions in dilational areas, and in extension and in shear fracture fillings, show that alteration of the major phase, plagioclase, is the fundamental process of grain size reduction in a variety of rock types. Cataclastic stresses and strain rates were controlled by alteration reaction rates in a coupled process that is a form of transformation-modified deformation. Fracturing leading to weakening was assisted by stresses due to the 60% volume increase accompanying in situ laumontization of plagioclase and by stress corrosion and subcritical crack growth facilitated by alteration. Deformation was also enhanced by replacement of plagioclase by weaker laumontite. Such dilatant cataclasis is consistent with fluid pressure levels having remained high during deformation with effective least principal compressive stress close to zero. This transformation-modified deformation at low temperatures (90° < T < 250°C) may be a common process in feldspar-rich rocks. The structures and microstructures described here could be used to distinguish the products of slow and fast Cataclastic deformation

    Frontal GABA Levels Change during Working Memory

    Get PDF
    Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    Fluid involvement in normal faulting

    No full text
    Abstract Evidence of¯uid interaction with normal faults comes from their varied role as¯ow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous¯uids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clayrich) 4 cataclasites 4 phyllonites 4 mylonite 4 mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic¯uid pressures over the depth range 3±5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low eective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic¯uid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical s 1 trajectories is only likely if¯uid overpressures are localised within the fault zone and the surrounding rock retains signi®cant tensile strength. Migrating pore¯uids interact both statically and dynamically with normal faults. Static eects include consideration of the relative permeability of the faults with respect to the country rock, and juxtaposition eects which determine whether a fault is transmissive to¯ow or acts as an impermeable barrier. Strong directional permeability is expected in the subhorizontal s 2 direction parallel to intersections between minor faults, extension fractures, and stylolites. Three dynamic mechanisms tied to the seismic stress cycle may contribute to¯uid redistribution: (i) cycling of mean stress coupled to shear stress, sometimes leading to postfailure expulsion of¯uid from vertical fractures; (ii) suction pump action at dilational fault jogs; and, (iii) fault-valve action when a normal fault transects a seal capping either uniformly overpressured crust or overpressures localised to the immediate vicinity of the fault zone at depth. The combination of s 2 directional permeability with¯uid redistribution from mean stress cycling may lead to hydraulic communication along strike, contributing to the protracted earthquake sequences that characterise normal fault systems.

    Tensile overpressure compartments on low-angle thrust faults

    No full text
    Abstract Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock’s tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in ‘crack-seal’ textures, demonstrating that the tensile overpressure state, σ 3′ = (σ 3 − P f)  σ 3. In compressional regimes (σ v = σ 3), subhorizontal extension veins may develop over vertical intervals <1 km or so below low-permeability sealing horizons with tensile strengths 10 < T o < 20 MPa. This is borne out by natural vein arrays. For a low-angle thrust, the vertical interval where the tensile overpressure state obtains may continue down-dip over distances of several kilometres in some instances. The overpressure condition for hydraulic fracturing is comparable to that needed for frictional reshear of a thrust fault lying close to the maximum compression, σ 1. Under these circumstances, especially where the shear zone material has varying competence (tensile strength), affecting the failure mode, dilatant fault–fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault–fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak (τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of the seismogenic megathrust, are prone to episodes of slow-slip, non-volcanic tremor, low-frequency earthquakes, very-low-frequency earthquakes, etc., attributable to the activation of tabular fault–fracture meshes at low σ 3′ around the thrust interface. Containment of near-lithostatic overpressures in such settings is precarious, fluid loss curtailing mesh activity. Graphical abstract

    Normal faults, normal friction?

    No full text

    Mélange rheology and seismic style

    No full text
    Shear displacements in crustal fault zones are accommodated by a range of seismic styles, including standard earthquakes, non-volcanic tremor, and continuous and transitory aseismic slip. Subduction channel shear zones, containing highly sheared, fluid-saturated trench-fill sediments intermingled with fragments of oceanic crust, are commonly inferred to occur along active subduction megathrusts. If this interpretation is correct, these plate boundary faults are not discrete planes, but may resemble the mélange shear zones commonly found in exhumed subduction-related rock assemblages. Mélange deformation appears to depend critically on the ratio of competent to incompetent material, with shear surfaces localized along lithological contacts or within competent domains, while matrix flow accommodates shearing by distributed strain. If the style of strain and/or displacement accommodation in a mélange reflects the partitioning between aseismic and seismic slip, the proportion of competent material seems likely to be a significant factor affecting seismic style within subduction channel shear zones, and along comparable mixed-lithology fault zones

    Shear veins observed within anisotropic fabric at high angles to the maximum compressive stress [Letter]

    No full text
    Some faults seem to slip at unusually high angles (>45°) relative to the orientation of the greatest principal compressive stress1, 2, 3, 4, 5. This implies that these faults are extremely weak compared with the surrounding rock6. Laboratory friction experiments and theoretical models suggest that the weakness may result from slip on a pre-existing frictionally weak surface7, 8, 9, weakening from chemical reactions10, elevated fluid pressure11, 12, 13 or dissolution–precipitation creep14, 15. Here we describe shear veins within the Chrystalls Beach accretionary mélange, New Zealand. The mélange is a highly sheared assemblage of relatively competent rock within a cleaved, anisotropic mudstone matrix. The orientation of the shear veins—compared with the direction of hydrothermal extension veins that formed contemporaneously—indicates that they were active at an angle of 80°±5° to the greatest principal compressive stress. We show that the shear veins developed incrementally along the cleavage planes of the matrix. Thus, we suggest that episodic slip was facilitated by the anisotropic internal fabric, in a fluid-overpressured, heterogeneous shear zone. A similar mechanism may accommodate shear at high angles to the greatest principal compressive stress in a range of tectonic settings. We therefore conclude that incremental slip along a pre-existing planar fabric, coupled to high fluid pressure and dissolution–precipitation creep, may explain active slip on severely misoriented faults
    corecore