24 research outputs found
Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 1. Map construction and localization of loci showing distorted segregation
Microsatellites have become the most important class of markers for mapping procedures. Primarily based on restriction fragment length polymorphism (RFLP) markers, several molecular genetic maps of maize have been developed, mainly using temperate inbred maize lines. To characterize the level of polymorphism of microsatellite loci and construct a genetic map in tropical maize, two elite inbred lines, L-08-05F and L-14-4B, were crossed to produce 400 F-2 individuals that were used as a mapping population. A survey of 859 primer pair sequences of microsatellites was used. The polymorphism screens of each microsatellite and genotype assignment were performed using high-resolution agarose gels. About 54 % of the primer sets gave clearly scorable amplification products, 13 % did not amplify and 33% could not be scored on agarose gels. A total of 213 polymorphic markers were identified and used to genotype the mapping population. Among the polymorphic markers, 40 showed loci deviating from expected Mendelian ratios and clusters of deviating markers were located in three chromosome regions. Non-Mendelian scoring was present in 19 markers. The final genetic map with 117 markers spanned 1634 cM in length with an average interval of 14 cM between adjacent markers.13929610
Association and Linkage Analysis of Aluminum Tolerance Genes in Maize
Aluminum (Al) toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis.). These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs
Genomic-based-breeding tools for tropical maize improvement
Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in detail
Mapping QTLs for kernel oil content in a tropical maize population
Maize cultivars often have low kernel oil content. To increase the oil content, efficient maize breeding programs have to be developed, which require the knowledge of the inheritance of this trait. Thus, the objective of this research was to map quantitative trait locus (QTLs) and estimate their effects for kernel oil content in a tropical maize population. Two maize inbred lines, contrasting for kernel oil content, were used to develop an F-2 population. Four hundred and eight F-2 plants were self-pollinated, and their kernels (F-2:3 progenies) were used for kernel oil evaluation. A genetic map with 75 microsatellites was developed, and the QTLs were mapped using the composite interval map (CIM); also, estimates of genetic and phenotypic variances, and heritability coefficient were computed. The map presented 10 linkage groups, spanned 1,438.6 cM in length with an average interval of 19.18 cM between adjacent markers. The kernel oil content averaged 58.40 g kg(-1), and the broad-sense heritability was high (h(2)=0.98). Thirteen QTLs were mapped, which were distributed into eight chromosomes, and explained 26.64% of the genetic variation. QTLs in chromosomes 1, 5, and 6 contributed the most for kernel oil content. Nine out of 13 QTLs with favorable alleles were from the parental inbred with the highest kernel oil content. The average level of dominance was partial, but gene action of the QTLs ranged from additive to overdominance. Eight out of 13 mapped QTLs were already reported for temperate maize populations.137225125
Somaclonal-variation-induced aluminum-sensitive mutant from an aluminum-inbred maize tolerant line
Somaclonal-variation-induced multiple mutations were observed in a progeny of the S1587 plant, regenerated from type I calli of the aluminum-tolerant inbred maize line Cat-100-6. After five generations of self-pollination, 14 progeny families of the S1587 somaclone were found to show aluminum;toxicity symptoms with altered root tip morphology and reduced primary root growth. The most sensitive progeny, S1587-17, was crossed to the Cat-100-6 inbred line. The parental lines and the Fl were tested in nutrient solutions containing an aluminum activity gradient of 0-93 . 10(-6). The heterozygote behaves like the tolerant parent at aluminum activities up to 40 . 10(-6) and showed an intermediate phenotype at higher aluminum concentrations. Histological sections of aluminum-treated roots from tolerant and sensitive plants stained with hematoxylin, an aluminum marker, showed a progressive destruction of the root tip of the aluminum-sensitive genotype over time and indicated that tolerance in Cat-100-6 could be due to an aluminum exclusion mechanism. Segregation analysis of the F2 and backcross to the sensitive parent based on root morphology of plants subjected to an aluminum activity of 30 . 10(-6) showed the typical 3:1 and 1.1 tolerant:sensitive segregation ratios, respectively, indicating that tolerance in the Cat-100-6 inbred maize line is controlled by a single nuclear, semidominant gene, named Alm1.161068669
Two genes control aluminum tolerance in maize: Genetic and molecular mapping analyses
We have identified two loci linked to aluminum (Al) tolerance in the maize inbred line Cat-100-6 by means of restriction fragment length polymorphism (RFLP) and bulked segregant analysis (BSA). A segregating population F-2 was obtained from a cross between Cat-100-6 (Al tolerant) x S1587-17 (Al sensitive) parents. Subsequently two DNA bulks of individuals, displaying a contrasting Al tolerance trait were generated from F-2. From a total of 158 markers used, 30 markers were identified showing polymorphism between parents and bulks. The segregation results derived from the hybridization from these 30 markers and 56 individuals from F-2 revealed 10 markers cosegregating with the Al tolerance which were located in two linkage groups. The linkage groups were composed of 6 and 4 markers, and they were mapped on the short arm of chromosomes 6 and 10, respectively. From these observations, we deduce that two loci are involved in this trait in Cat-100-6 line. QGENE software was used to study the correlation between these two loci and the trait for aluminum tolerance. The results indicate that the locus on chromosome 10 has the stronger effect, and it is responsible for the major part of the variability of the trait.42347548