42 research outputs found
A Book Review: The Seven Habits of Highly Effective People
The Stephen R. Covey\u27s book βThe Seven Habits of Highly Effective Peopleβ tells about ways to increase individualsβ effectiveness and make them more successful. To accomplish these goals, the author proposes the practice of seven main principles or habits. These include: being proactive; beginning with the end in mind; putting first things first; thinking win-win; seeking first to understand rather than to be understood; synergizing; and sharpening the saw
Are rotating strange quark stars good sources of gravitational waves?
We study the viscosity driven (Jacobi-like) bar mode instability of rapidly
rotating strange stars in general relativity. A triaxial, "bar shaped" compact
star could be an efficient source of continuous wave gravitational radiation in
the frequency range of the forthcoming interferometric detectors. We locate the
secular instability point along several constant baryon mass sequences of
uniformly rotating strange stars described by the MIT bag model. Contrary to
neutron stars, strange stars with T/|W| (the ratio of the rotational kinetic
energy to the absolute value of the gravitational potential energy) much lower
than the corresponding value for the mass-shed limit can be secularly unstable
to bar mode formation if shear viscosity is high enough to damp out any
deviation from uniform rotation. The instability develops for a broad range of
gravitational masses and rotational frequencies of strange quark stars. It
imposes strong constraints on the lower limit of the frequency at the innermost
stable circular orbit around rapidly rotating strange stars. The above results
are robust for all linear self-bound equations of state assuming the growth
time of the instability is faster than the damping timescale. We discuss
astrophysical scenarios where triaxial instabilities (r-mode and viscosity
driven instability) could be relevant in strange stars described by the
standard MIT bag model of normal quark matter. Taking into account actual
values of viscosities in strange quark matter and neglecting the magnetic field
we show that Jacobi-like instability cannot develop in any astrophysicaly
interesting temperature windows. The main result is that strange quark stars
described by the MIT bag model can be accelerated to very high frequency in Low
Mass X-ray binaries if the strange quark mass is ~ 200 MeV or higher.Comment: 15 pages, 10 figures, to appear in Astronomy and Astrophysic
Lower limits on the maximum orbital frequency around rotating strange stars
Observations of kHz quasi-periodic oscillations (QPOs) in the X-ray fluxes of
low-mass X-ray binaries (LMXBs) have been used in attempts to constrain the
external metric of the compact members of these binaries, as well as their
masses and the equation of state of matter at supranuclear denisties. We
compute the maximum orbital frequency of stable circular motion around
uniformly rotating strange stars described by the MIT bag model. The
calculations are performed for both normal and supramassive constant baryon
mass sequences of strange stars rotating at all possible rates. We find the
lower limits on the maximum orbital frequency and discuss them for a range of
masses and for all rotational frequencies allowed in the model considered. We
show that for slowly and moderately rotating strange stars the maximum value of
orbital frequency can be a good indicator of the mass of the compact object.
However, for rapidly rotating strange stars the same value of orbital frequency
in the innermost stable circular orbit is obtained for stars with masses
ranging from that of a planetoid to about three solar masses. At sufficiently
high rotation rates of the strange star, the rotational period alone constrains
the stellar mass to a surprisingly narrow range.Comment: 9 pages, 5 figures, accepted by A&
A Convenient Synthesis of 4-Trifluoromethyl-(2H)-pyridazin-3-ones from Methyl 3,3,3-Trifluoropyruvate.
Reaction of Unsymmetrical Trifluoromethyl-Containing 1,3-Dicarbonyl Compounds with βPushβPullβ Enamines.
ChemInform Abstract: Reaction of Enamines with Trifluoromethyl Containing Carbonyl Reagents.
Aminoalkylation of βPush-Pullβ Enamines Having a Methyl Group at the Ξ±-Position with Imines of Methyl 3,3,3-Trifluoropyruvate.
ChemInform Abstract: Convenient Synthesis of Trifluoromethylated 2-Pyrrolidone and 2-Pyrrolone Derivatives
Resonances of Gravitational Tides as a Powerful Energy Source of the Geodynamic Processes in Earthβs Crust
ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΡΠΏΠΎΡΠΎΠ± ΠΏΡΠΎΠ³Π½ΠΎΠ·Π° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠΎΠ² ΡΠ΅ΡΡΡΠ½Π°Π΄ΡΠ°ΡΠΈΠ΄Π½Π΅Π²Π½ΡΡ
Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΡΠΈΠ»ΠΈΠ²ΠΎΠ² Π² Π·Π΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΡΠ΅. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π΄Π°Π½Π½ΡΠ΅ ΡΠ΅Π³ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠΎΠ² ΠΏΡΠΈΠ»ΠΈΠ²Π½ΡΡ
Π³ΡΠ°Π²ΠΈΡΠΈΡΡΡΡΠΈΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ², Π²ΠΊΠ»ΡΡΠ°Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΡ Π±Π°ΡΠΈΡΠ΅Π½ΡΡΠ° ΡΠΈΡΡΠ΅ΠΌΡ ΠΠ΅ΠΌΠ»Ρ β ΠΡΠ½Π° Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π³Π΅ΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠ»ΡΡ
. ΠΠ°Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π½Π°ΠΏΡΡΠΆΠ΅Π½Π½ΠΎ-Π΄Π΅ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π³Π΅ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ΅Π΄Ρ ΠΏΠΎΠ΄ Π²Π»ΠΈΡΠ½ΠΈΠ΅ΠΌ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠΎΠ². ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠΎΠ² Π³ΡΠ°Π²ΠΈΡΠ°ΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΡΠΈΠ»ΠΈΠ²ΠΎΠ² Π² Π·Π΅ΠΌΠ½ΠΎΠΉ ΠΊΠΎΡΠ΅ Π² Π½Π΅ΡΡΠ΅Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΠΎΡΡΠ°ΡΠ»ΠΈ, ΠΏΡΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·Π΅ Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ΠΊΡΡΠΏΠ½ΡΡ
ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠΎΠΎΡΡΠΆΠ΅Π½ΠΈΠΉ (ΠΏΠ»ΠΎΡΠΈΠ½ ΠΠΠ‘), ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΡΠ΅ΠΎΡΠΈΠΈ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΎΠ΄ΠΈΠ½ΠΎΡΠ½ΡΡ
Π΄Π΅ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΡ
Π²ΠΎΠ»Π½-ΡΠ±ΠΈΠΉΡIt was proposed a method for the prediction of the occurrence of fourteen day resonances of gravitational tides in the Earthβs crust. The data of registration of parameters of tidal gravitational factors including fluctuations of the barycenter in Earth-Moon system in different geophysical fields was presented for the first time. It was given the estimation of the amount of changes in the stress-strain state of the geological environment under the resonances influence. It was substantiated possible directions of using energy of the resonances of gravitational tides in the Earthβs crust in oil and gas fields, the earthquake prediction, security of large man-made structures (hydroelectric dams), and the development of theories of single deformation killer wave
ΠΠΊΠΎΠ»ΠΎΠ³ΠΎ-Ρ ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π·ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΠ²Π° ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ΅ΡΡΡΡΠ½ΡΡ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ (Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΡΠ°ΡΠ½ΠΎΡΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°Ρ)
Subject. The high resource potential of the Krasnoyarsk Territory generates a topical and rapidly
growing demand for its territory for the purposes of its multifunctional economic use. The variety of
loads on the regional ecosystems and the desire to minimize the risk of their destruction requires a
comprehensive planning and targeted use of the territories of the region.
Objectives. To substantiate an integrated approach and the construction of the index, reflecting
the sustainable development of natural resource areas. To create an administrative tool based on
statistical data, without expert estimates and subjective judgments, in order to make decisions about
the possibility of placing production facilities in the selected municipality from a position of the three
dimensions: ecology, society, economy.
Methodology. Using statistical and econometric methods, this paper substantiates the construction
of the index that is an aggregated integral index of environmental sustainability for municipalities
of the Krasnoyarsk Territory. The technique is applicable to various scales of territorial zoning. The
scale is determined by the availability of reliable statistical information for objects of different sizes
(municipality, city district, industrial zones).
Results. The article highlights the issues of environmental economic zoning of resource areas on the
basis of the integral index of ecological and economic stability, taking into account environmental,
economic and social factors in the context of municipalities (urban districts, municipal districts).
Besides, the article shows the possibilities of environmental economic zoning for the determination of
the boundaries of priority and recommended functional areas, because the local areas of institutional
conflict environmental management are located precisely there.
A draft of Krasnoyarsk Territory Government Resolution βOn approval of a regional order and methods
of environmental economic zoning of the Krasnoyarsk Territoryβ is developed for the purposes of
balanced social, ecological and economic development of the natural and resource region Conclusion. The developed approach can be used to ensure the sustainable development of territories
of intensive economic development, to substantiate socio-economic development programs of the
Krasnoyarsk Territory and its municipalities, to carry out ecological and economic assessment and
decision-making about the possibility to implement major investment projectsΠΡΠ΅Π΄ΠΌΠ΅Ρ. ΠΡΡΠΎΠΊΠΈΠΉ ΡΠ΅ΡΡΡΡΠ½ΡΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π» ΠΡΠ°ΡΠ½ΠΎΡΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°Ρ ΠΏΠΎΡΠΎΠΆΠ΄Π°Π΅Ρ Π² Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ
Π±ΡΡΡΡΠΎ ΡΠ°ΡΡΡΡΠΈΠΉ ΡΠΏΡΠΎΡ Π½Π° Π΅Π³ΠΎ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΡ Π΄Π»Ρ ΡΠ΅Π»Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ. ΠΠ½ΠΎΠ³ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅ Π½Π°Π³ΡΡΠ·ΠΎΠΊ Π½Π° ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠ΅ ΡΠΊΠΎΡΠΈΡΡΠ΅ΠΌΡ ΠΈ ΡΡΡΠ΅ΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΊ ΠΌΠΈΠ½ΠΈΠΌΠΈ-
Π·Π°ΡΠΈΠΈ ΡΠΈΡΠΊΠΎΠ² ΠΈΡ
ΡΠ°Π·ΡΡΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π±ΡΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΠΏΠ»Π°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΠ΅Π»Π΅Π²ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ ΡΠ΅Π³ΠΈΠΎΠ½Π°.
Π¦Π΅Π»ΠΈ. ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ ΠΈΠ½Π΄Π΅ΠΊΡΠ°, ΠΎΡΡΠ°ΠΆΠ°ΡΡΠ΅Π³ΠΎ ΡΡΡΠΎΠΉΡΠΈ-
Π²ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ ΠΏΡΠΈΡΠΎΠ΄ΠΎΡΠ΅ΡΡΡΡΠ½ΡΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ. Π‘ΠΎΠ·Π΄Π°Π½ΠΈΠ΅ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°,
ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π°Π½Π½ΡΡ
, Π±Π΅Π· ΡΠΊΡΠΏΠ΅ΡΡΠ½ΡΡ
ΠΎΡΠ΅Π½ΠΎΠΊ ΠΈ ΡΡΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
ΡΡΠΆΠ΄Π΅-
Π½ΠΈΠΉ, Ρ ΡΠ΅Π»ΡΡ ΠΏΡΠΈΠ½ΡΡΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ²
Π² Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΌ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΠΎΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Ρ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΡΡΠ΅Ρ
ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ: ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΡΠΎΡΠΈΡΠΌΠ°,
ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ
ΠΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎ-
Π΄ΠΎΠ² Π΄Π°Π½ΠΎ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΈΠ½Π΄Π΅ΠΊΡΠ° β Π°Π³ΡΠ΅Π³ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΠΊΠΎΠ»ΠΎ-
Π³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΡΠ°ΡΠ½ΠΎΡΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°Ρ. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΏΡΠΈ-
ΠΌΠ΅Π½ΠΈΠΌΠ° ΠΊ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌ ΠΌΠ°ΡΡΡΠ°Π±Π°ΠΌ Π·ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ. ΠΠ°ΡΡΡΠ°Π± ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ
Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΠΉ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π΄Π»Ρ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² (ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΠΎΠ΅
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅, ΡΠ°ΠΉΠΎΠ½ Π³ΠΎΡΠΎΠ΄Π°, ΠΏΡΠΎΠΌΡΡΠ»Π΅Π½Π½ΡΠ΅ Π·ΠΎΠ½Ρ).
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΡΡΠ°ΡΡΠ΅ ΠΎΡΠ²Π΅ΡΠ΅Π½Ρ Π²ΠΎΠΏΡΠΎΡΡ ΡΠΊΠΎΠ»ΠΎΠ³ΠΎ-Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΡΡΡΠ½ΡΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΠΊΠΎΠ»ΠΎΠ³ΠΎ-Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΠΈ, ΡΡΠΈ-
ΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠ°ΠΊΡΠΎΡΡ Π² ΡΠ°Π·ΡΠ΅Π·Π΅ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΡΡ
ΠΎΠ±-
ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ (Π³ΠΎΡΠΎΠ΄ΡΠΊΠΈΡ
ΠΎΠΊΡΡΠ³ΠΎΠ², ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΡΡ
ΡΠ°ΠΉΠΎΠ½ΠΎΠ²).
ΠΠΎΠΊΠ°Π·Π°Π½Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠΊΠΎΠ»ΠΎΠ³ΠΎ-Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π³ΡΠ°Π½ΠΈΡ ΠΏΡΠΈΠΎΡΠΈ-
ΡΠ΅ΡΠ½ΡΡ
ΠΈ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΠΌΡΡ
ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
Π·ΠΎΠ½, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΈΠΌΠ΅Π½Π½ΠΎ Π² Π½ΠΈΡ
ΠΈΠΌΠ΅ΡΡ ΠΌΠ΅ΡΡΠΎ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠ΅
ΡΠ°ΠΉΠΎΠ½Ρ Π²Π΅Π΄ΠΎΠΌΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΡΠ»ΠΈΠΊΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΡΠΎΠ΄ΠΎΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ.
Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΏΡΠΎΠ΅ΠΊΡ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠ°Π²ΠΈΡΠ΅Π»ΡΡΡΠ²Π° ΠΡΠ°ΡΠ½ΠΎΡΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°Ρ Β«ΠΠ± ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠΈ
ΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΊΠΎΠ»ΠΎΠ³ΠΎ-Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΡΠΈΡΠΎ-
ΡΠΈΠΈ ΠΡΠ°ΡΠ½ΠΎΡΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°ΡΒ» Π² ΡΠ΅Π»ΡΡ
ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΠΈΠΎ-ΡΠΊΠΎΠ»ΠΎΠ³ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ
ΠΏΡΠΈΡΠΎΠ΄Π½ΠΎ-ΡΠ΅ΡΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π³ΠΈΠΎΠ½Π°.
ΠΡΠ²ΠΎΠ΄. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ³ΠΎ ΡΠ°Π·-
Π²ΠΈΡΠΈΡ ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΠ²ΠΎΠ΅Π½ΠΈΡ, ΠΏΡΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ-
ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΡΠ°ΡΠ½ΠΎΡΡΡΠΊΠΎΠ³ΠΎ ΠΊΡΠ°Ρ ΠΈ Π΅Π³ΠΎ ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΡΠ½ΡΡ
ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ; ΠΏΡΠΈ
ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΡΠΊΠΎΠ»ΠΎΠ³ΠΎ-Ρ
ΠΎΠ·ΡΠΉΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΊΡΠΏΠ΅ΡΡΠΈΠ·Ρ ΠΈ ΠΏΡΠΈΠ½ΡΡΠΈΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΡΠ΅Π°Π»ΠΈΠ·Π°-
ΡΠΈΠΈ ΠΊΡΡΠΏΠ½ΡΡ
ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΡΡ
ΠΏΡΠΎΠ΅ΠΊΡΠΎ