10 research outputs found

    Development and Characterization of a Porcine Liver Scaffold

    No full text
    The growing number of patients requiring liver transplantation for chronic liver disease cannot be currently met due to a shortage in donor tissue. As such, alternative tissue engineering approaches combining the use of acellular biological scaffolds and different cell populations (hepatic or progenitor) are being explored to augment the demand for functional organs. Our goal was to produce a clinically relevant sized scaffold from a sustainable source within 24 h, while preserving the extracellular matrix (ECM) to facilitate cell repopulation at a later stage. Whole porcine livers underwent perfusion decellularization via the hepatic artery and hepatic portal vein using a combination of saponin, sodium deoxycholate, and deionized water washes resulting in an acellular scaffold with an intact vasculature and preserved ECM. Molecular and immunohistochemical analysis (collagen I and IV and laminin) showed complete removal of any DNA material, together with excellent retention of glycosaminoglycans and collagen. Fourier-transform infrared spectroscopy (FTIR) analysis showed both absence of nuclear material and removal of any detergent residue, which was successfully achieved after additional ethanol gradient washes. Samples of the decellularized scaffold were assessed for cytotoxicity by seeding with porcine adipose-derived mesenchymal stem cells in vitro, these cells over a 10-day period showed attachment and proliferation. Perfusion of the vascular tree with contrast media followed by computed tomography (CT) imaging showed an intact vascular network. In vivo implantation of whole intact nonseeded livers, into a porcine model (as auxiliary graft) showed uniform perfusion macroscopically and histologically. Using this method, it is possible to create an acellular, clinically sized, liver scaffold with intact vasculature in less than 24 h

    Enteral Feeding Reduces Endothelial Nitric Oxide Synthase in the Caudal Intestinal Microvasculature of Preterm Piglets.

    No full text
    The initiation of enteral feeding represents a challenge to the neonatal intestinal microcirculation, especially in preterms where it predisposes to necrotizing enterocolitis (NEC). We hypothesized that a structural microvascular deficiency may occur when enteral feeding is initiated in preterm piglets susceptible to NEC. Stereologic volume densities of a pan-endothelial marker (vWF), and the main vasodilator endothelial nitric oxide synthase (eNOS), were determined along the small intestine of 1) unfed preterm piglets, 2) piglets receiving total parenteral nutrition (TPN) for 2-3 d, and 3) piglets fed 2 d sow's colostrum (TPN+SOW) or milk formula (TPN+FOR) following TPN. In the mucosa, vWF-density decreased in a cranio-caudal direction. A corresponding mucosal eNOS gradient appeared only after initiating enteral feeding. In TPN+SOW, eNOS induction may lag behind the mucosal growth of the caudal region. In TPN+FOR, formula-related factors (i.e. bacteria, cytokines) may suppress mucosal eNOS, indicated by increased stress-sensitive nuclear HIF1alpha staining. The low mucosal endothelial eNOS density was related to the presence of NEC lesions, maybe via increased hypoxia-sensitivity, especially in the caudal region as indicated by nuclear HIF1alpha-staining. Our results suggest an insufficient structural adaptation of the microvasculature to enteral feeding, especially of mucosal eNOS, which may lead to NEC. AD - Department of Veterinary Medicine [E.R.H, M.O., A.L.M.W., C.J.G.], University of Antwerp, 2610 Wilrijk, Belgium; Department of Human Nutrition [T.T., P.T.S.], University of Copenhagen, Frederiksberg DK-1958, Denmark; Department of Pharmacology, Toxicology, Biochemistry and Organ Physiology [S.U.S.], University of Ghent, 9820 Merelbeke, Belgium; Department of Anatomy and Embryology [W.H.L.], University of Maastricht, 6200 MD Maastricht, The Netherlands

    A genome-wide association study of osteochondritis dissecans in the Thoroughbred

    Get PDF
    Osteochondrosis is a developmental orthopaedic disease that occurs in horses, other livestock species, companion animal species, and humans. The principal aim of this study was to identify quantitative trait loci (QTL) associated with osteochondritis dissecans (OCD) in the Thoroughbred using a genome-wide association study. A secondary objective was to test the effect of previously identified QTL in the current population. Over 300 horses, classified as cases or controls according to clinical findings, were genotyped for the Illumina Equine SNP50 BeadChip. An animal model was first implemented in order to adjust each horse's phenotypic status for average relatedness among horses and other potentially confounding factors which were present in the data. The genome-wide association test was then conducted on the residuals from the animal model. A single SNP on chromosome 3 was found to be associated with OCD at a genome-wide level of significance, as determined by permutation. According to the current sequence annotation, the SNP is located in an intergenic region of the genome. The effects of 24 SNPs, representing QTL previously identified in a sample of Hanoverian Warmblood horses, were tested directly in the animal model. When fitted alongside the significant SNP on ECA3, two of these SNPs were found to be associated with OCD. Confirmation of the putative QTL identified on ECA3 requires validation in an independent sample. The results of this study suggest that a significant challenge faced by equine researchers is the generation of sufficiently large data sets to effectively study complex diseases such as osteochondrosis

    Findings on prenatal, lactational and later childhood exposure to dioxins and dioxin-like compounds: a review of the Amsterdam-Zaandam cohort 1987-2005

    No full text
    corecore