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Abstract 

Osteochondrosis is a developmental orthopaedic disease that occurs in horses, other 

livestock species, companion animal species and humans.  The principal aim of this 

study was to identify quantitative trait loci (QTL) associated with osteochondritis 

dissecans (OCD) in the Thoroughbred using a genome-wide association study.    A 

secondary objective was to test the effect of previously identified QTL in the current 

population.  Over three hundred horses, classified as cases or controls according to 

clinical findings, were genotyped for the Illumina Equine SNP50 BeadChip.  An 

animal model was first implemented in order to adjust each horse’s phenotypic status 

for average relatedness among horses and other potentially confounding factors which 

featured in the data.  The genome-wide association test was then conducted on the 

residuals from the animal model.  A single SNP on chromosome 3 was found to be 

associated with OCD at a genome-wide level of significance, as determined by 

permutation.  According to the current sequence annotation, the SNP is located in an 

intergenic region of the genome.  The effects of 24 SNPs, representing QTL 

previously identified in a sample of Hanoverian Warmblood horses, were tested 

directly in the animal model.  When fitted alongside the significant SNP on ECA3, 

two of these SNP were found to be associated with OCD.  Confirmation of the 

putative QTL identified on ECA3 requires validation in an independent sample.  The 

results of this study suggest that a significant challenge faced by equine researchers is 

the generation of sufficiently large datasets to effectively study such complex diseases 

as osteochondrosis.  
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Introduction 

 

Osteochondrosis (OC) is a disease of the locomotory system which affects the joints 

of many animals, most frequently being observed in pigs, horses and dogs.  

Osteochondrosis can be described as a focal disturbance of endochondral ossification 

(Ytrehus et al. 2007) that occurs in young, growing individuals and as such has been 

classified as a developmental orthopaedic disease.  Primary lesions, thought to be 

initiated by a failure of blood supply to the cartilage (Ytrehus et al. 2007), progress to 

form retained cores of cartilage eventually causing dissecting lesions on the joint 

surface (McIlwraith 2011).  In its early stages, the condition has been referred to as 

dyschondroplasia or more recently osteochondrosis latens (Ytrehus et al. 2007) and is 

likely to be subclinical in nature.  In the most serious cases, where cartilage or 

subchondral bone fragments become separated from the articular surface, introducing 

an inflammatory component, the disease may be referred to as osteochondritis 

dissecans (OCD).  In such cases, typical clinical signs of the disease are synovitis and 

pain accompanied by varying degrees of lameness (McIlwraith 2011).  In the horse, 

joints most commonly affected are the fetlock, hock, and stifle; within these joints 

specific predilection sites have been identified (McIlwraith 1993).  Prevalence 

estimates for OC vary widely, ranging from 3% (stifle OC in Thoroughbreds (Oliver 

et al. 2008)) to 70% (estimates for all joints in Dutch Warmbloods (van Grevenhof et 

al. 2009a)).  A large proportion of this variation is attributable to differences in the 

type and number of anatomical locations examined, differences in the specific 

manifestation of the disease considered and to breed differences (Philipsson et al. 

1993; Pieramati et al. 2003; van Grevenhof et al. 2009a; Wittwer et al. 2006).  A 

recent prevalence estimate of 25% for the Thoroughbred (Lepeule et al. 2009) appears 
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typical.  This relatively high disease prevalence, along with the likely contribution of 

OC to the predominance of lameness as a cause of wastage in young horses (Olivier et 

al. 1997; Rossdale et al. 1985), makes OC a high priority for study. 

 

Whilst there exists both experimental and anecdotal evidence of a genetic component 

to OC, the aetiopathogenesis of the disease is not fully understood (Ytrehus et al. 

2007).  The disease is considered multifactorial in origin with at least some evidence 

of both environmental factors, for example nutrition, and physiological factors, such 

as growth and body size, endocrine factors and conformation, which may themselves 

be mediated through genetics, playing a role in the condition (Lepeule et al. 2009; 

McIlwraith 2004; van Weeren et al. 1999).  Low to moderate estimates of heritability 

for OC across a range of breeds and disease manifestations (Philipsson et al. 1993; 

Pieramati et al. 2003; Schougaard et al. 1990; van Grevenhof et al. 2009b; Wittwer et 

al. 2007a) together with between breed differences in prevalence (Lepeule et al. 2009) 

indicate that genetic variability exists in disease susceptibility.  Typical values for OC 

scored as a single binary trait (all joints combined) are 0.10 to 0.20 (Pieramati et al. 

2003; Wittwer et al. 2007a) but heritability estimates of up to 0.5 have been reported 

for individual joints (Grøndahl and Dolvik 1993). 

 

The search for markers to explain the proposed genetic variance in susceptibility to 

OC began several years ago, with the intention both of enhancing our understanding 

of the condition and of enabling marker assisted selection.  Early studies using 

primarily linkage based analyses (dependent on family data), to detect regions of the 

genome associated with OC in the horse have identified several putative quantitative 

trait loci (QTL) (Dierks et al. 2007; Wittwer et al. 2007b).  As is typical for QTL 
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discovered using this approach, their effects are generally large but their locations are 

imprecise.  Whilst several of these QTL have undergone further refinement, very few 

have been validated in independent data sets.  Similar studies in pigs have revealed 

few (Andersson-Eklund et al. 2000) or no (Lee et al. 2003) QTL for osteochondrosis.  

These results illustrate the difficulty in identifying truly associated regions for 

complex traits using linkage analysis. 

 

The opportunity for QTL studies in horses has recently been advanced by the 

publication of the equine genome sequence (Wade et al. 2009) together with the 

release of the Illumina Equine SNP50 BeadChip, which has allowed the 

implementation of genome-wide association studies (GWAS).  In contrast to linkage 

analysis, GWAS rely on samples of individuals, which may be unrelated, genotyped 

at medium to high density.  It is expected that this approach will allow the 

identification of common variants which could not be found using the traditional 

linkage based approach (Iles 2008).  We are aware of four GWAS for OC that have 

been carried out in three different horse breeds to date:  Lampe (2009) and Komm 

(2010) (using the same data), Teyssèdre et al. (2010) and Lykkjen et al. (2010).  The 

number of QTL identified per study ranges from four (Lykkjen et al. 2010) to 18 

(Lampe 2009) with the range likely at least partly attributable both to differences in 

significance thresholds used and to differing phenotype definitions.  A single putative 

correspondence between QTL has been described (Lykkjen et al. 2010).   

 

This study demonstrates the use of clinical observations as a source of data for use in 

genomic studies and is the first QTL mapping study for OC to be conducted in the 

Thoroughbred.  A GWAS was performed on 348 samples using the Illumina Equine 
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SNP50 BeadChip to identify loci associated with OCD in the Thoroughbred.  In 

addition, QTL for OC previously identified in a Hanoverian Warmblood (HWB) 

population were tested for their effect in the current data set.  
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Materials & Methods 1 

 2 

Sample Collection 3 

Blood samples were collected over two years (2007/2008) from 348 Thoroughbreds 4 

(159 males, 189 females) classified either as cases (169) or controls (179) for OC.  5 

Horses were admitted for surgery to the Rood and Riddle Equine Hospital, Lexington, 6 

Kentucky, at age nine to twelve months.  Horses originated from one of 19 7 

surrounding horse farms.  The number of horses per farm ranged from two to 89, with 8 

approximately equal numbers of cases and controls sourced from each farm (see 9 

Figure 1).  Management of the horses, including feeding, housing and exercise levels 10 

are expected to vary by farm.  Due to the anonymity of samples, pedigree details for 11 

the horses were not available but the sample is expected to comprise a mixture of half 12 

sibs (by sire and dam since data was collected across two years) and more distantly 13 

related horses.      14 

 15 

Osteochondrosis case samples (n=169; 90 males, 79 females) consisted of horses 16 

which were diagnosed as having OC requiring surgery in at least one joint from 17 

radiographic surveys performed by referring veterinarians (see Supplementary 18 

Material, Table S1, for further details).  The diagnosis was then confirmed through 19 

repeat radiography of suspected OC affected regions on the admission of the horses to 20 

the equine hospital.  In order to be considered for surgery, cartilage and/or bone 21 

fragments separated from the articular surface would have to be present, and therefore 22 

our cases can be considered as suffering specifically from osteochondritis dissecans 23 

(OCD).  Subsequent arthroscopic surgeries were performed by L. R. Bramlage.  A 24 

typical arthroscopic surgery involves the removal of all fragments and the 25 
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debridement of any separated articular cartilage and defective bone (McIlwraith 26 

2002).  Horses were affected in at least one of the following joints: fetlock (24.9%), 27 

hock (56.2%), stifle (29.6%), shoulder (0.6%).  The total number of joints affected per 28 

horse ranged from 1 to 5.     29 

 30 

Control samples (n=179; 69 males, 110 females) consisted of horses which were 31 

admitted to the hospital for surgical procedures other than OC, most commonly the 32 

insertion of a transphyseal bridge to address angular limb deformities (ALD), the 33 

arthroscopic removal of osteochondral fractures of the proximal (first) phalanx in the 34 

fetlock joint (fetlock chips) and the treatment of sesamoid fractures (see 35 

Supplementary Material, Document S1, for further details).  Many case horses also 36 

underwent these procedures (see Table 1).  All control horses were clear from signs of 37 

OC, as determined by a full radiographic survey (as in cases) prior to surgery. 38 

 39 

Genotyping 40 

Blood samples were collected in ethylenediaminetetraacetic acid and DNA extracted 41 

either by Tepnel (http://www.tepnel.com/dna-extraction-service.asp) or at the Animal 42 

Health Trust using Nucleon BACC DNA extraction kits (http://www.tepnel.com/dna-43 

extraction-kits-blood-and-cell-culture.asp).  A small dilution of each sample was 44 

prepared at 70ng/ul and submitted for genotyping to Cambridge Genomic Services 45 

(http://www.cgs.path.cam.ac.uk/services/snp-genotyping/services.html). The Illumina 46 

Equine SNP50 Genotyping BeadChip 47 

(www.illumina.com/documents/products/datasheets/datasheet_equine_snp50.pdf), 48 

which comprises 54,602 single nucleotide polymorphisms (SNP) located across all 49 

autosomes and the X chromosome, was used.  These were selected from the database 50 
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of over one million SNP 51 

(http://www.broadinstitute.org/ftp/distribution/horse_snp_release/v2/) generated 52 

during the sequencing of the horse genome 53 

(http://www.broadinstitute.org/mammals/horse).  Samples for this study were 54 

genotyped alongside samples for several other studies and the full genotyped dataset 55 

was inspected using the Illumina GenomeStudio genotyping module and a series of 56 

quality control metrics used to identify poorly performing SNP.  Quality control (QC) 57 

at this stage led to the removal of 7.1% of the SNPs (n=3,895) due to poor genotyping 58 

quality (see Table S2 in Supporting Material).  These SNPs were set to missing prior 59 

to the commencement of quality control for this study.   60 

 61 

Quality Control (QC) for Data Analyses 62 

Firstly, samples were checked for sex discrepancies (marker-based prediction of sex 63 

versus sample label) and intermediate X-chromosomal inbreeding (0.2<F<0.8), with 64 

exclusions being made on the basis of suspected sampling or genotyping errors.  This 65 

process resulted in two exclusions due to sex discrepancy and 16 exclusions based on 66 

indeterminate sex as demonstrated by intermediate inbreeding, leaving 168 controls 67 

and 162 cases for further analysis. 68 

 69 

For the GWAS (see below) the following thresholds were used for excluding data:  70 

minor allele frequency (<0.05), missing genotypes per SNP (>5%), missing SNP per 71 

sample (>5%) and differential proportions of missing SNPs between cases and 72 

controls (p<0.05).  No exclusions were made on the basis of Hardy-Weinberg 73 

equilibrium (HWE).  74 

 75 
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For construction of a marker-based relationship matrix (see below), a subset of 76 

markers meeting more stringent QC was chosen as recommended by (Yang et al. 77 

2011) with exclusions made as follows:  minor allele frequency (<0.10), missing 78 

genotypes per SNP (>0.5%) missing genotypes per sample (>1%) and HWE (p<0.05). 79 

 80 

Mixed Model Analysis 81 

Binary case/control phenotypes were adjusted for fixed and random effects using the 82 

following linear mixed model in ASReml (Gilmour et al. 2009).  A single categorical 83 

fixed effect was fitted which represents the division of samples into contemporary 84 

groups relating to the three most common reasons for surgery, other than OCD, listed 85 

in Table 1 (ALD, fetlock chip(s) and sesamoid fracture(s)) and sex, resulting in 23 x 2 86 

= 16 classes in total, 11 of which contained observations in the final analysis (see 87 

Table S3 in Supplementary Material).  A single random effect, animal, was fitted 88 

generating an individual animal model (Henderson 1975) in which the pedigree 89 

relationship matrix was replaced with a marker-based relationship matrix (G-matrix) 90 

in order to adjust for average allele sharing among sampled horses.  Autosomal 91 

markers remaining after QC were used to generate the G-matrix as follows:  92 

( )( )
( )( )∑ −

−−
=

k
kk

kkjkki
ji pp

pxpx
N

f
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1 ,,
, , where summation is across SNPs (k=1,N), xik  is a 93 

genotype of the ith horse at the kth SNP coded as 0, ½, 1 and pk is the frequency of the 94 

allele that is homozygous for the genotype coded as 1 (Aulchenko et al. 2007).  On 95 

the diagonal, ( )iii ff += 15.0, , where fi is the loss (or gain) of heterozygosity relative 96 

to the expectation.  The relationship matrix describes the average relatedness between 97 

individuals and therefore controls for genetic stratification likely to be present in the 98 

sample.  The transformation of the G-matrix into a distance matrix followed by a 99 
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multi-dimensional scaling (MDS) analysis (Cailliez 1983; Cox and Cox 1994; R 100 

Development Core Team 2009), also allowed data to be inspected for the presence of 101 

outliers and substructure.  MDS plots based on the first two principal components 102 

were considered with respect to farm of origin, sex and contemporary group.  103 

Following the implementation of the mixed model, a vector of approximately 104 

normally distributed (N~(0,1)) residual errors replaced our binary (0,1) observation as 105 

the phenotype for testing in the GWAS.       106 

 107 

Genome-Wide Association Study 108 

GWAS was performed in GenABEL (Aulchenko et al. 2007) using a score test for a 109 

Gaussian distributed trait and no covariates (Schaid et al. 2002).  A genome-wide 110 

significance level was calculated by performing 10,000 permutations of the residual 111 

phenotypes against genotypes.  Permutations were carried out within sex, and the 5% 112 

significance level empirically determined.  Confirmation of the effects of SNPs found 113 

to be significant by this approach was carried out by fitting all such SNP genotypes 114 

(coded as 0, 1, 2) simultaneously as fixed effects in the original mixed model. 115 

 116 

Testing Previously Published QTL 117 

SNPs selected to represent OC QTL detected in other studies were also tested by 118 

fitting them simultaneously as fixed effects in the mixed model.  The QTL regions 119 

tested were based primarily on GWAS results published in Lampe (2009) and Komm 120 

(2010).  These studies were performed on samples from HWB horses and it has been 121 

shown in a reference sample of more than 150,000 horses that the Thoroughbred 122 

contributes nearly 35% of this breed’s genes (Hamann and Distl 2008).  Whilst these 123 

studies examined a range of OC phenotypes, we tested only QTL relevant to OC or 124 
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OCD with fetlock and hock cases combined, as here (see Table S4 in Supplementary 125 

Material for a list of QTL).  Where SNP names or precise SNP locations were 126 

provided, the exact SNP was fitted in the mixed model with the exception of one case 127 

where the SNP was not typed in our sample, in this case the closest SNP was fitted in 128 

the mixed model (type A in Table S4).  In cases where only an approximate location 129 

was given, i.e. to the nearest 0.1Mb, current GWAS results for the region 1Mb 130 

upstream and 1Mb downstream were examined and the SNP with the smallest p-value 131 

fitted in the mixed model (type B in Table S4).  Finally, in cases where several SNPs 132 

within a region were listed as being significant, the same range was searched in the 133 

current GWAS analysis and the SNP with the smallest p-value fitted in the mixed 134 

model (type C and D in Table S4).  In order to assess their ability to enhance our 135 

model, all SNPs representing QTL were fitted simultaneously alongside contemporary 136 

group, SNPs found to be significant in the current GWAS and the G-matrix in the 137 

mixed model. 138 
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Results 139 

 140 

Mixed Model Analysis 141 

The genomic relationship matrix was calculated based on 30,554 autosomal SNPs that 142 

passed the stringent QC thresholds.  The distribution of genomic relationships 143 

between individuals in the sample is shown in Figure 2.  MDS plots revealed no 144 

obvious outliers or any genetic substructure relating to factors such as farm or 145 

contemporary group (data not shown).  The fitting of the mixed model resulted in an 146 

extremely small estimated genetic variance component (<10-7) making it impossible 147 

to estimate trait heritability with any precision; estimates of random animal effects 148 

(estimated additive breeding values) were correspondingly small (-5.8x10-8 to 6.5x10-149 

8).  Therefore, the residuals generated for testing in the association study were 150 

influenced primarily by contemporary group.  The distribution of residuals can be 151 

seen in Figure 3.           152 

 153 

Genome-Wide Association Study 154 

Following QC, 40,180 SNPs were tested for association; the mean minor allele 155 

frequency of remaining SNP was 0.28 and the distribution of minor allele frequencies 156 

was approximately uniform.  Based on empirical genome-wide significance 157 

(p<2.91x10-6), a single SNP was found to be significantly associated with OCD as 158 

tested using residuals from the mixed model.  This was SNP BIEC2-799865 located at 159 

88,493,417bps on ECA3; this SNP has alleles C and T with a minor allele frequency 160 

(T) of 0.4 and conforms to a HWE genotype distribution (see Table 2 for genotype 161 

frequencies).  Figure 4 shows a Manhattan plot of SNPs on ECA3.  A haplotype block 162 

analysis of the region containing BIEC2-799865 revealed somewhat erratic linkage 163 
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disequilibrium (LD) structure surrounding the SNP making the definition of an 164 

associated QTL region problematical (Figure 5).  The apparent deviation from the 165 

expectation of decreasing LD with increasing distance between markers exhibited by 166 

BIEC2-799865 and its neighbours goes someway to explaining why this SNP stands 167 

apart from surrounding SNP in Figure 4.  With SNPs exhibiting r² (Purcell 2009; 168 

Purcell et al. 2007) with BIEC2-799865 of greater than 0.10 at distances up to 10Mb, 169 

we extended our search for other potentially associated SNPs within this range.  A 170 

further four SNPs within 10Mb of BIEC2-799865 had p<0.001; two of these SNPs 171 

had r² of 0.45 – 0.55 with and were within 3 SNPs of BIEC2-799865 (see Figure 5), 172 

with the remainder being >4Mb away and having r² < 0.10.  All four SNPs were 173 

located to the right of BIEC2-799865. 174 

 175 

Fitting BIEC2-799865 as an additional covariate in the mixed model resulted in an 176 

estimated additive effect of -0.16 (±0.03), i.e. for every T allele an individual carries 177 

at the locus, that individual’s probability of OCD is decreased by 0.16.  This allows us 178 

to make a crude estimate of the contribution of this SNP to the overall phenotypic 179 

variance.  Under the assumption of no dominance or interaction effects and using 180 

( ) 212 αppVA −=  (Falconer and Mackay 1996) where p is allele frequency at the 181 

locus and α is the estimated SNP effect, BIEC2-799865 explains ~5% of the variance 182 

of OCD.  The effect of BIEC2-799865 remained significant even when contemporary 183 

group was removed from the mixed model.  Fitting the additional four SNPs with 184 

p<0.001 alongside contemporary group and BIEC2-799865 resulted in both BIEC2-185 

799865 and one of the more distant SNPs (BIEC2-802230), having regression 186 

coefficients significantly different from zero. 187 

 188 
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Testing Previously Published QTL 189 

For each of the 24 QTL regions listed in Table S4, a representative SNP was added to 190 

the mixed model containing contemporary group, BIEC2-799865 and the random 191 

effect of animal so that all SNPs were analysed simultaneously.  This analysis resulted 192 

in only two of the 24 SNPs having a significant association with OCD.  These SNPs 193 

were BIEC2-859811 on ECA4 (39,852,072), representing a QTL at 39.26Mb (Table 194 

S4, QTL no. 8) (Komm 2010) and BIEC2-410967 on ECA18 (36,772,271), 195 

representing a QTL between 36,408,881 and 38,738,316 (Lampe 2009) (Table 4, QTL 196 

no. 16).  BIEC2-799865 remained significant when fitted alongside the 24 QTL SNPs 197 

albeit with a slightly reduced size of effect (-0.11).      198 
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Discussion 

 

This GWAS in the Thoroughbred revealed a single SNP, BIEC2-799865 on ECA3, to 

be associated with OCD at a genome-wide level of significance when tested using the 

residuals from a mixed model analysis.  Population genetics theory allows us to 

predict that, assuming the heritability for OCD is 0.15, this QTL accounts for ~34% of 

the genetic variation of the trait.  However, effect estimates based on primary GWAS 

data have been shown to be upwardly biased, often to a large degree (Göring et al. 

2001) and so a majority of the genetic variance underlying OCD remains to be 

captured.  Two neighbouring SNPs showed an association with OCD which 

approached significance (p<0.001); the relatively lower MAF of these SNPs (0.27 and 

0.25) compared to that of BIEC2-799865 (0.4) may explain their failure to reach 

genome-wide significance.  The lack of haplotype block structure around BIEC2-

799865, means that the much sought after and characteristic GWAS peak is not 

observed in this case.  Whilst the implication of this on the validity of the association 

is not clear, it does impact on our ability to precisely define a corresponding QTL 

region for further evaluation.  Although it would have been desirable to fit haplotypes 

representing the associated region in our model, the low LD in the region hindered our 

ability to accurately infer phase.  For the purposes of candidate gene discovery we 

chose to examine the region 1Mb either side of the SNP. 

 

The 2Mb window surrounding BIEC2-799865 contained 22 labelled genes, 21 of 

which are described as protein coding and one of which is labelled as a pseudo gene.  

Whilst, according to the current annotation BIEC2-799865 lies between genes, 

LOC100064680 located at 88,494,283 - 88,511,285 bps contains (within an intron) 
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BIEC2-799867, the SNP which is both adjacent to and most highly correlated with 

BIEC2-799865.  This gene is described as being similar to basic kruppel like factor 

and studies in mice and C.elegans show orthologues to this gene, kruppel-like factor 3 

(basic) (KLF3), to be involved in adipogenesis (Sue et al. 2008; Zhang et al. 2009).  

More generally, KLFs have been described as DNA binding transcriptional regulators 

that play diverse roles during differentiation and development (Bieker 2001).  Whilst 

the likely function of KLF3 does not preclude its relevance, there is no evidence of a 

direct role for this gene in OC.  This was true of most of the genes located within the 

QTL region defined, with the exception of UDP-glucose dehydrogenase (UGDH). 

 

The UGDH gene (located at 87,818,121 – 87,843,937 bps) appears to function in the 

regulation of glycosaminoglycan (GAG) synthesis in cells lining the articular cartilage 

surface (Clarkin et al. 2011).  These GAG are involved in extra-cellular matrix 

integrity, playing a crucial role in chondrogenesis, homeostasis and compressive 

resilience (Clarkin et al. 2011).  A potential link between GAG and osteochondrosis 

has been demonstrated by the observation of differential levels of GAG in 

osteochondritic lesions versus healthy cartilage (Kuroki et al. 2002; Lillich et al. 

1997).  However, the direction of causality is not clear and several other studies have 

observed no significant difference (Bertone et al. 2005; de Grauw et al. 2006).  Two 

SNPs located within introns of UGDH were not significantly associated with OCD 

(0.05<p<0.10).  One of these SNPs did, however, show moderate LD (r² = 0.1 – 0.2) 

with BIEC2-799865 and the two neighbouring SNPs mentioned above (see Figure 5); 

as before, the relatively lower MAF of this SNP (0.34) may have prevented it from 

appearing above the background in terms of significance.  The second SNP in UGDH 

had a MAF of 0.06 and therefore provides little information about either association 
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or LD.  Whilst the distance of this gene from BIEC2-799865 and its relatively low LD 

with the SNP question its relevance, there are likely to be many untyped variants in 

this region, some of which could plausibly have stronger LD with BIEC2-799865.   

 

Three previous GWAS for OC in the horse have also identified QTL on ECA3 

(Komm 2010; Lampe 2009; Teyssèdre et al. 2010).  The closest to BIEC2-799865 

was presented recently in a pre-print version of a study carried out in French Trotters 

and is located at 100-110Mb (Teyssèdre et al. 2011).  The relatively close proximity 

of the two QTL represents some correspondence between studies.  However, with 

average LD at this distance (~12Mb) being r²<0.02 (Corbin et al. 2010), it is also 

possible that these QTL represent two different underlying genetic variants.   

 

Adding SNPs to represent previously identified QTL to our model (which included 

BIEC2-799865) resulted in two out of 24 SNPs tested having regression coefficients 

significantly different from zero (p<0.05) and therefore showing the potential to 

enhance the fit of the model.  On ECA4, BIEC2-859811 (39,852,072) had a 

regression coefficient of -0.102 (±0.049).  Komm (2010) identified six candidate 

genes located between 37.1Mb and 44.7Mb.  On ECA18, BIEC2-410967 

(36,772,271) had an estimated effect size of -0.085 (±0.042).  Lampe (2009) identified 

three candidate genes in the vicinity of the QTL corresponding to this SNP.  These 

apparent validations should however be viewed with caution since adjustments to the 

mixed model, for example the removal of BIEC2-799865, lead to different QTL being 

significant and we were therefore unable to unambiguously confirm any of the 

previous QTL in the current dataset.  
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There are several reasons for the poor correspondence between QTL studies of OC in 

the horse.  Firstly, the QTL which have been identified to date may be false positives 

(McCarthy et al. 2008).  Alternatively, subsequent studies may have been 

underpowered to detect them.  In this case, such results may be due to, for example, 

differences in phenotypic definition or population ancestry.  Ideally, replication 

studies should involve precisely the same allele or haplotype, the same phenotype and 

the same genetic model as the original signal (Weedon et al. 2008).  In this study, by 

testing only the QTL regions associated with OC under the combined phenotype 

definition (hock and fetlock) used by Lampe (2009) and Komm (2010), the difference 

in phenotypic definition between the three studies was minimised.   

 

Another reason for the lack of correspondence may be breed differences.  Hamann et 

al. (2008) estimated that 35% of the HWB genes came from Thoroughbred lines, but 

it is not known what the proportion was in the Komm (2010) and Lampe (2009) 

sample of 154 foals.  Assuming the same QTL are controlling the genetic 

predisposition to OC in both breeds, differences in allele and haplotype frequencies 

between breeds will impact on the proportion of variance the QTL explain and 

therefore on our ability to detect them.  Furthermore, with no standardised method 

either for reporting QTL or for carrying out validation studies, the approach taken 

here to select SNPs for testing in the mixed model was largely subjective and we may 

have missed more appropriate SNPs.   

 

Despite being one of the largest GWAS of OC in horses performed to date, the 

principal limitation of this study remains a lack of power.  This lack of power is 

evidenced by both the low number of genome-wide significant SNP and the very 
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small estimated genetic component.  Whilst disappointing, our inability to estimate 

heritability in this sample is perhaps not surprising given the relatively large standard 

errors which accompany some of the heritability estimates for OC to date (Pieramati 

et al. 2003; Wittwer et al. 2007a).  Furthermore, our findings do not necessarily rule 

out a non-zero heritability, rather more data is needed to produce a reliable estimate.   

 

The explanation for the apparent low power of this study is likely to be multifaceted.  

Firstly, since power is directly related to sample size, the relatively small number of 

horses genotyped for this study will have limited the number of identifiable QTL, as 

shown by power calculations of, for example, Wang et al. (2005).  Secondly, 

phenotypic definition can play an important role in determining the power of GWAS 

of complex diseases.  Optimal phenotypic definitions are those with strict inclusion 

criteria, with minimising genetic heterogeneity between cases being a useful way of 

increasing study power (McCarthy et al. 2008).  Unfortunately, OC represents a 

clinically complex phenotype, affecting multiple joints and predilection sites within 

joints, as well as appearing in a variety of different forms.  Just as prevalence and 

heritability estimates for OC have been affected by this problem, so we can expect 

QTL mapping studies to be.  In this study, by considering exclusively those cases with 

fragments present (OCD), the genetic heterogeneity of the cases has been reduced and 

we are also following recommendations by van Grevenhof et al. (2009b) that flattened 

bone contours and fragments should be evaluated as statistically different disorders. 

 

Several studies to date have considered further subdivision of OC cases by joint 

affected, resulting in different QTL being identified for each subgroup (Dierks et al. 

2007; Wittwer et al. 2007b).  This is appealing given the apparent low correlation 
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among the occurrence of lesions of OC in different body locations (Jorgensen and 

Andersen 2000; Jorgensen et al. 1995; van Grevenhof et al. 2009b) and the 

corresponding idea that OC is in fact a localised disease (Ytrehus et al. 2007).  

However, subdividing cases in this way represents a significant loss of power.  

Furthermore, testing several manifestations of the disease serves to exacerbate the 

already serious problem of multiple testing.  For this reason and from a practical 

selection perspective, expressing OC as a single trait is more appealing, and should 

enable the identification of QTL controlling more generalised factors.   

 

In this study, model complexity due to the presence of horses suffering from 

conditions other than OC in our cohort may have reduced the power of our association 

test.  The uneven representation of cases and controls across the contemporary groups 

describing the presence or absence of ALD, fetlock chips and sesamoid fractures in 

our samples, represented a potential cause of bias in the sample and therefore had to 

be fitted in the model.  In the event that none of these conditions are related to OC or 

have a hereditary component, our adjustment for contemporary group represents a 

loss of power through the reduction in the number of degrees of freedom of the 

model.  However, in the case where one or more of these diseases has a hereditary 

component (of which there is some evidence (Philipsson et al. 1993; Wittwer et al. 

2007a)), the exclusion of contemporary group from the model would result in severe 

confounding.  Since the latter is by far the more serious case, we chose to fit 

contemporary group in the mixed model. 

 

However, there is seemingly a trade-off to be made.  Whilst the use of clinical data in 

this case added complexity and potentially noise to the data, it also gave us increased 
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confidence in our phenotypic classifications of OCD.  In this study, all of our cases 

underwent arthroscopy, the so-called ‘gold standard’ of diagnosis of cartilage defects 

(McIlwraith 2010) and so we can be confident of high specificity.  All of the controls 

had OC ruled out through a comprehensive radiographic survey of predilection sites 

and the evaluation of radiographs by a specialist in the field (LRB) significantly 

reduced the chance of OC going undiagnosed. 

 

In this GWAS we identified a SNP associated with OCD in a sample of 330 

Thoroughbreds.  This association requires validation in an independent dataset in 

order to rule out the possibility that it represents a false positive association.  In the 

event that the SNP is validated, further fine-mapping and re-sequencing of the region 

will be needed in order to elucidate the causal mutation behind this association.  The 

likely issue of poor power to detect QTL in this study illustrates the challenge faced 

by members of the equine genetics community in collecting and genotyping 

sufficiently large samples for effective GWAS to be carried out.  Here we have 

demonstrated the potential for clinical data to be utilised as a source of samples for the 

future.   
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Tables 

 

Table 1 A description of conditions (other than OC) for which horses were treated.  

For further information see Supplementary Material, Document S1.  

 

Condition 

No. of affected 

Cases Controls Total 

Angular limb deformity (ALD) 38 90 128 

Fetlock chip(s) 36 71 107 

Other chip(s) 3 3 6 

Sesamoid fracture(s) 8 23 31 

Other – bone related 4 1 5 

Other – not bone related 7 3 10 

  

Table 2 Genotype frequencies of BIEC2-799865 and results of chi-square tests for 

association with OCD 

 Genotype frequency   

 C/C C/T T/T Total No. of Samples p-value from Χ² testa  

Controls 0.26 0.55 0.19 168  

Casesb 0.44 0.46 0.10 162 0.002 

Hock cases 0.42 0.46 0.12 89 0.034 

Stifle cases 0.48 0.44 0.08 50 0.008 

Fetlock cases 0.44 0.46 0.10 41 0.062 

aThe chi-square tests compare each case category with the controls. 

bNote, the number of cases is not equal to the sum of the cases in each joint location 

because some horses were affected in multiple joint locations. 
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Figure Legends 1 

Figure 1 Distribution of cases and controls across farms. 2 

Figure 2 Distribution of genomic relationships between pairs of individuals. 3 

Figure 3 Distribution of residuals from mixed model analysis. 4 

Figure 4 A Manhattan plot showing association results for ECA3.  The solid 5 

horizontal line represents the genome-wide significance level and the dashed line 6 

represents the significance level used to identify surrounding SNP with possible 7 

relevance. 8 

Figure 5 LD plot (Barrett et al. 2005) of ECA3 region 1Mb either side of BIEC2-9 

799865 (solid line, black circle).  SNPs within the UGDH gene are indicated by a 10 

white circle.  SNPs with a p<0.001 in the GWAS are indicated by a dashed line.  11 

Marked haplotypes calculated according to (Gabriel et al. 2002).    12 
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Supplementary Material 13 

Table S1 – Radiographic surveys:  32 radiograph views as recommended by 14 

Keeneland Thoroughbred Racing and Sales, Lexington and based on guidelines 15 

provided by the American Association of Equine Practitioners (AAEP).  Description 16 

taken from (Preston et al. 2010). 17 

Table S2 – Quality control criteria implemented on genotype data and the number of 18 

SNP discarded at each step 19 

Table S3 - The distribution of samples across contemporary groups fitted in animal 20 

model 21 

Table S4 - Details of QTL regions tested.  22 

Document S1 – A description of conditions (other than OC) commonly suffered by 23 

horses sampled 24 
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