49 research outputs found

    A spinor approach to Walker geometry

    Full text link
    A four-dimensional Walker geometry is a four-dimensional manifold M with a neutral metric g and a parallel distribution of totally null two-planes. This distribution has a natural characterization as a projective spinor field subject to a certain constraint. Spinors therefore provide a natural tool for studying Walker geometry, which we exploit to draw together several themes in recent explicit studies of Walker geometry and in other work of Dunajski (2002) and Plebanski (1975) in which Walker geometry is implicit. In addition to studying local Walker geometry, we address a global question raised by the use of spinors.Comment: 41 pages. Typos which persisted into published version corrected, notably at (2.15

    In vitro antimicrobial effects of aztreonam, colistin, and the 3-drug combination of aztreonam, ceftazidime and amikacin on metallo-β-lactamase-producing Pseudomonas aeruginosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are limited choice of antimicrobial agents to treat infection with metallo-<it>β</it>-lactamase-producing <it>Pseudomonas aeruginosa</it>. We evaluate the antimicrobial effects of aztreonam alone, colistin alone and the 3-drug combination of aztreonam, ceftazidime and amikacin on 23 strains of metallo-<it>β</it>-lactamase-producing <it>P. aeruginosa </it>by time-killing tests.</p> <p>Methods</p> <p>Strains used were from different hospitals in Japan and had different pulse-field gel electrophoresis patterns by restriction with <it>Spe</it>I. The minimum inhibitory concentrations of 11 antimicrobial agents (piperacillin, piperacillin/tazobactam, imipenem, meropenem, aztreonam, ceftazidime, amikacin, tobramycin, arbekacin, ciprofloxacin and colistin) were determined using the agar dilution test. The effects of aztreonam, colistin and the combination of aztreonam, ceftazidime and amikacin were determined by time-killing studies.</p> <p>Results</p> <p>Bacteriostatic effects after 6 hours of drug exposure were observed in 12 strains (52.2%) of 23 strains of metallo-<it>β</it>-lactamase-producing <it>P. aeruginosa </it>with 48 mg/l aztreonam, in 19 strains (82.6%) with the 3-drug combination of 16 mg/l aztreonam, 16 mg/l ceftazidime, and 4 mg/l amikacin, and in 23 strains (100%) with 2 mg/l colistin. Bactericidal effects after 6 h drug exposure were observed in 1 strain (4.3%) with 48 mg/l aztreonam, in 8 strains (30.4%) with the 3-drug combination and in all 23 strains (100%) with 2 mg/l colistin.</p> <p>Conclusion</p> <p>Evaluation of <it>in vitro </it>antimicrobial effects on metallo-<it>β</it>-lactamase-producing <it>P. aeruginosa </it>revealed relatively good effects of the 3-drug combination of aztreonam, ceftazidime and amikacin and marked effects of colistin.</p

    A potent nonporphyrin class of photodynamic therapeutic agent: cellular localisation, cytotoxic potential and influence of hypoxia

    Get PDF
    We have developed a totally new class of nonporphyrin photodynamic therapeutic agents with a specific focus on two lead candidates azadipyrromethene (ADPM)01 and ADPM06. Confocal laser scanning microscopy imaging showed that these compounds are exclusively localised to the cytosolic compartment, with specific accumulation in the endoplasmic reticulum and to a lesser extent in the mitochondria. Light-induced toxicity assays, carried out over a broad range of human tumour cell lines, displayed EC50 values in the micro-molar range for ADPM01 and nano-molar range for ADPM06, with no discernable activity bias for a specific cell type. Strikingly, the more active agent, ADPM06, even retained significant activity under hypoxic conditions. Both photosensitisers showed low to nondeterminable dark toxicity. Flow cytometric analysis revealed that ADPM01 and ADPM06 were highly effective at inducing apoptosis as a mode of cell death. The photophysical and biological characteristics of these PDT agents suggest that they have potential for the development of new anticancer therapeutics

    Hydrogen and PO 4

    No full text

    Determination of Threshold Dose of Photodynamic Therapy to Measure Superficial Necrosis

    No full text
    Background Data: Photodynamic therapy (PDT) involves the photoinduction of cytotoxicity using a photosensitizer agent, a light source of the proper wavelength, and the presence of molecular oxygen. A model for tissue response to PDT based on the photodynamic threshold dose (Dth) has been widely used. In this model cells exposed to doses below Dth survive while at doses above the Dth necrosis takes place. Objective: This study evaluated the light Dth values by using two different methods of determination. One model concerns the depth of necrosis and the other the width of superficial necrosis. Materials and Methods: Using normal rat liver we investigated the depth and width of necrosis induced by PDT when a laser with a gaussian intensity profile is used. Different light doses, photosensitizers (Photogem, Photofrin, Photosan, Foscan, Photodithazine, and Radachlorin), and concentrations were employed. Each experiment was performed on five animals and the average and standard deviations were calculated. Results: A simple depth and width of necrosis model analysis allows us to determine the threshold dose by measuring both depth and surface data. Comparison shows that both measurements provide the same value within the degree of experimental error. Conclusion: This work demonstrates that by knowing the extent of the superficial necrotic area of a target tissue irradiated by a gaussian light beam, it is possible to estimate the threshold dose. This technique may find application where the determination of Dth must be done without cutting the tissue.Fundacao de Amparo Pesquisa do Estado de Sao Paulo (FAPESP
    corecore