5 research outputs found

    Consultative engagement of stakeholders toward a roadmap for African language technologies

    Get PDF
    There has been a rise in natural language processing (NLP) communities across the African continent (Masakhane, AfricaNLP workshops). With this momentum noted, and given the existing power asymmetries that plague the African continent, there is an urgent need to ensure that these technologies move toward shared goals between organizations and stakeholders, not only to improve the representation of African languages in cutting-edge NLP research but also to ensure that NLP research enables technological advances toward human dignity, well-being, and equity for those who speak African languages. This study investigates the motivations, focus, and challenges faced by various stakeholders who are at the core of the NLP process. We perform structured stakeholder identification to identify core stakeholders in the NLP process. Interviews with representatives of these stakeholder groups are performed and are collated into relevant themes. Finally, a set of recommendations are proposed for use by policy and artificial intelligence (AI) researchers

    MasakhaNEWS:News Topic Classification for African languages

    Get PDF
    African languages are severely under-represented in NLP research due to lack of datasets covering several NLP tasks. While there are individual language specific datasets that are being expanded to different tasks, only a handful of NLP tasks (e.g. named entity recognition and machine translation) have standardized benchmark datasets covering several geographical and typologically-diverse African languages. In this paper, we develop MasakhaNEWS -- a new benchmark dataset for news topic classification covering 16 languages widely spoken in Africa. We provide an evaluation of baseline models by training classical machine learning models and fine-tuning several language models. Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API). Our evaluation in zero-shot setting shows the potential of prompting ChatGPT for news topic classification in low-resource African languages, achieving an average performance of 70 F1 points without leveraging additional supervision like MAD-X. In few-shot setting, we show that with as little as 10 examples per label, we achieved more than 90\% (i.e. 86.0 F1 points) of the performance of full supervised training (92.6 F1 points) leveraging the PET approach

    Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on child stunting and anaemia in rural Zimbabwe: a cluster-randomised trial.

    Get PDF
    BACKGROUND: Child stunting reduces survival and impairs neurodevelopment. We tested the independent and combined effects of improved water, sanitation, and hygiene (WASH), and improved infant and young child feeding (IYCF) on stunting and anaemia in in Zimbabwe. METHODS: We did a cluster-randomised, community-based, 2โ€ˆร—โ€ˆ2 factorial trial in two rural districts in Zimbabwe. Clusters were defined as the catchment area of between one and four village health workers employed by the Zimbabwe Ministry of Health and Child Care. Women were eligible for inclusion if they permanently lived in clusters and were confirmed pregnant. Clusters were randomly assigned (1:1:1:1) to standard of care (52 clusters), IYCF (20 g of a small-quantity lipid-based nutrient supplement per day from age 6 to 18 months plus complementary feeding counselling; 53 clusters), WASH (construction of a ventilated improved pit latrine, provision of two handwashing stations, liquid soap, chlorine, and play space plus hygiene counselling; 53 clusters), or IYCF plus WASH (53 clusters). A constrained randomisation technique was used to achieve balance across the groups for 14 variables related to geography, demography, water access, and community-level sanitation coverage. Masking of participants and fieldworkers was not possible. The primary outcomes were infant length-for-age Z score and haemoglobin concentrations at 18 months of age among children born to mothers who were HIV negative during pregnancy. These outcomes were analysed in the intention-to-treat population. We estimated the effects of the interventions by comparing the two IYCF groups with the two non-IYCF groups and the two WASH groups with the two non-WASH groups, except for outcomes that had an important statistical interaction between the interventions. This trial is registered with ClinicalTrials.gov, number NCT01824940. FINDINGS: Between Nov 22, 2012, and March 27, 2015, 5280 pregnant women were enrolled from 211 clusters. 3686 children born to HIV-negative mothers were assessed at age 18 months (884 in the standard of care group from 52 clusters, 893 in the IYCF group from 53 clusters, 918 in the WASH group from 53 clusters, and 991 in the IYCF plus WASH group from 51 clusters). In the IYCF intervention groups, the mean length-for-age Z score was 0ยท16 (95% CI 0ยท08-0ยท23) higher and the mean haemoglobin concentration was 2ยท03 g/L (1ยท28-2ยท79) higher than those in the non-IYCF intervention groups. The IYCF intervention reduced the number of stunted children from 620 (35%) of 1792 to 514 (27%) of 1879, and the number of children with anaemia from 245 (13ยท9%) of 1759 to 193 (10ยท5%) of 1845. The WASH intervention had no effect on either primary outcome. Neither intervention reduced the prevalence of diarrhoea at 12 or 18 months. No trial-related serious adverse events, and only three trial-related adverse events, were reported. INTERPRETATION: Household-level elementary WASH interventions implemented in rural areas in low-income countries are unlikely to reduce stunting or anaemia and might not reduce diarrhoea. Implementation of these WASH interventions in combination with IYCF interventions is unlikely to reduce stunting or anaemia more than implementation of IYCF alone. FUNDING: Bill & Melinda Gates Foundation, UK Department for International Development, Wellcome Trust, Swiss Development Cooperation, UNICEF, and US National Institutes of Health.The SHINE trial is funded by the Bill & Melinda Gates Foundation (OPP1021542 and OPP113707); UK Department for International Development; Wellcome Trust, UK (093768/Z/10/Z, 108065/Z/15/Z and 203905/Z/16/Z); Swiss Agency for Development and Cooperation; US National Institutes of Health (2R01HD060338-06); and UNICEF (PCA-2017-0002)

    MasakhaNEWS:News Topic Classification for African languages

    Get PDF
    African languages are severely under-represented in NLP research due to lack of datasets covering several NLP tasks. While there are individual language specific datasets that are being expanded to different tasks, only a handful of NLP tasks (e.g. named entity recognition and machine translation) have standardized benchmark datasets covering several geographical and typologically-diverse African languages. In this paper, we develop MasakhaNEWS -- a new benchmark dataset for news topic classification covering 16 languages widely spoken in Africa. We provide an evaluation of baseline models by training classical machine learning models and fine-tuning several language models. Furthermore, we explore several alternatives to full fine-tuning of language models that are better suited for zero-shot and few-shot learning such as cross-lingual parameter-efficient fine-tuning (like MAD-X), pattern exploiting training (PET), prompting language models (like ChatGPT), and prompt-free sentence transformer fine-tuning (SetFit and Cohere Embedding API). Our evaluation in zero-shot setting shows the potential of prompting ChatGPT for news topic classification in low-resource African languages, achieving an average performance of 70 F1 points without leveraging additional supervision like MAD-X. In few-shot setting, we show that with as little as 10 examples per label, we achieved more than 90\% (i.e. 86.0 F1 points) of the performance of full supervised training (92.6 F1 points) leveraging the PET approach
    corecore