1,034 research outputs found

    Realization of Universal Optimal Quantum Machines by Projective Operators and Stochastic Maps

    Full text link
    Optimal quantum machines can be implemented by linear projective operations. In the present work a general qubit symmetrization theory is presented by investigating the close links to the qubit purification process and to the programmable teleportation of any generic optimal anti-unitary map. In addition, the contextual realization of the N ->M cloning map and of the teleportation of the N->(M-N) universal NOT gate is analyzed by a novel and very general angular momentum theory. An extended set of experimental realizations by state symmetrization linear optical procedures is reported. These include the 1->2 cloning process, the UNOT gate and the quantum tomographic characterization of the optimal partial transpose map of polarization encoded qubits.Comment: 11 pages, 7 figure

    Decoherence of a single-ion qubit immersed in a spin-polarized atomic bath

    Get PDF
    We report on the immersion of a spin-qubit encoded in a single trapped ion into a spin-polarized neutral atom environment, which possesses both continuous (motional) and discrete (spin) degrees of freedom. The environment offers the possibility of a precise microscopic description, which allows us to understand dynamics and decoherence from first principles. We observe the spin dynamics of the qubit and measure the decoherence times (T1 and T2), which are determined by the spin-exchange interaction as well as by an unexpectedly strong spin-nonconserving coupling mechanism

    Sensemaking and Relational Consequences of Peer Co-worker Deception

    Get PDF
    This exploratory study examined sensemaking of peer co-worker deception from the perception of the deceived. A total of 58 narrative accounts of deception were collected via face-to-face interviews with 23 employed adults. Analysis revealed four primary narratives of co-worker deception: corrupt system narratives, cover your ass (CYA) narratives, personal gain narratives, and personality trait narratives. Perceived motives and consequences were primary considerations in the sensemaking process and employees reported changing their communication patterns to avoid deceptive co-workers or hold them more accountable for their actions. The theoretical and practical implications of these results are discussed and suggestions for future research are posited

    Teleportation scheme implementing contextually the Universal Optimal Quantum Cloning Machine and the Universal Not Gate. Complete experimental realization

    Full text link
    By a significant modification of the standard protocol of quantum state Teleportation two processes ''forbidden'' by quantum mechanics in their exact form, the Universal NOT gate and the Universal Optimal Quantum Cloning Machine, have been implemented contextually and optimally by a fully linear method. In particular, the first experimental demonstration of the Tele-UNOT Gate, a novel quantum information protocol has been reported (cfr. quant-ph/0304070). A complete experimental realization of the protocol is presented here.Comment: 11 pages, 3 figure

    Ethical Concerns When Supervising Spanish-English Bilingual Counselors: Suggestions for Practice

    Get PDF
    To best serve Latino clients, counselor educators and supervisors must ensure counselors receives adequate training and practice in cultural competence. 5is article presents an overview of the needs of Spanish English bilingual (SEB) counselors, a case study that illustrates SEB counselors common concerns, and addressed three fundamental ethical questions: (a) Should supervisors be pro6cient in the language their supervisees are serving clients? (b) What constitutes su4cient cultural competence when supervisors oversee service to clients who are culturally diverse and do not speak English? (c) How can supervisors and counselor educators best support supervisees linguistically and culturally nuanced practice

    A strongly interacting gas of two-electron fermions at an orbital Feshbach resonance

    Get PDF
    We report on the experimental observation of a strongly interacting gas of ultracold two-electron fermions with orbital degree of freedom and magnetically tunable interactions. This realization has been enabled by the demonstration of a novel kind of Feshbach resonance occurring in the scattering of two 173Yb atoms in different nuclear and electronic states. The strongly interacting regime at resonance is evidenced by the observation of anisotropic hydrodynamic expansion of the two-orbital Fermi gas. These results pave the way towards the realization of new quantum states of matter with strongly correlated fermions with orbital degree of freedom.Comment: 5 pages, 4 figure

    Observation of photon-assisted tunneling in optical lattices

    Full text link
    We have observed tunneling suppression and photon-assisted tunneling of Bose-Einstein condensates in an optical lattice subjected to a constant force plus a sinusoidal shaking. For a sufficiently large constant force, the ground energy levels of the lattice are shifted out of resonance and tunneling is suppressed; when the shaking is switched on, the levels are coupled by low-frequency photons and tunneling resumes. Our results agree well with theoretical predictions and demonstrate the usefulness of optical lattices for studying solid-state phenomena.Comment: 5 pages, 3 figure

    Sympathetic cooling and collisional properties of a Rb-Cs mixture

    Full text link
    We report on measurements of the collisional properties of a mixture of 133^{133}Cs and 87^{87}Rb atoms in a magnetic trap at μK\mu\mathrm{K} temperatures. By selectively evaporating the Rb atoms using a radio-frequency field, we achieved sympathetic cooling of Cs down to a few μK\mu\mathrm{K}. The inter-species collisional cross-section was determined through rethermalization measurements, leading to an estimate of as=595a0a_s=595 a_0 for the s-wave scattering length for Rb in the F=2,mF=2>|F=2, m_F=2> and Cs in the F=4,mF=4>|F=4, m_F=4> magnetic states. We briefly speculate on the prospects for reaching Bose-Einstein condensation of Cs inside a magnetic trap through sympathetic cooling

    DIMENSIONAMENTO ÓTIMO DE PILARES DE CONCRETO ARMADO

    Get PDF
    A área da engenharia responsável pelo dimensionamento de estruturas vive em busca da solução que melhor atenderá a vários parâmetros simultâneos como estética, custo, qualidade, peso entre outros. Na prática, não se pode afirmar que o melhor projeto foi de fato executado, pois os projetos são feitos principalmente baseados na experiência do executor, sem se esgotar todas as hipóteses possíveis. É neste sentido que os processos de otimização se fazem necessários na área de dimensionamento de estruturas. É possível obter a partir de um objetivo dado, como o custo, o dimensionamento que melhor atenderá a este parâmetro. Existem alguns estudos nesta área, porém ainda é necessário mais pesquisas. Uma área que vem avançando no estudo de otimização estrutural é o dimensionamento de pilares de acordo com a ABNT NBR 6118:2014 que atenda a uma gama maior de geometrias possíveis. Deve-se também estudar o melhor método de otimização para este tipo de problema dentro dos vários existentes na atualidade. Assim o presente trabalho contempla o embasamento conceitual nos temas de dimensionamento de pilares e métodos de otimização na revisão bibliográfica indicando as referências e métodos utilizados no software de dimensionamento otimizado de pilares, programado com auxílio do software MathLab e seus pacotes, utilizando métodos determinísticos de otimização. Esta pesquisa foi realizada para obtenção do Título de Mestre em Engenharia de Estruturas na Universidade Federal do Espírito Santo
    corecore