25 research outputs found

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.</p

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities 1,2 . This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity 3�6 . Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55 of the global rise in mean BMI from 1985 to 2017�and more than 80 in some low- and middle-income regions�was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing�and in some countries reversal�of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories. © 2019, The Author(s)

    Repositioning of the global epicentre of non-optimal cholesterol

    Get PDF
    High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol�which is a marker of cardiovascular risk�changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95 credible interval 3.7 million�4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world. © 2020, The Author(s), under exclusive licence to Springer Nature Limited

    Influence Of The Addition Of Lauric Acid To Films Made From Gelatin, Triacetin And A Blend Of Stearic And Palmitic Acids

    No full text
    The objective of this research was to verify the influence of adding increasing amounts of lauric acid on the functional properties of homogenized films made from gelatin, triacetin and a blend of palmitic and stearic acids. The films were characterised with respect to their visual aspect, water vapour permeability (WVP), water solubility, mechanical properties (tensile strength and percent elongation), oxygen permeability (O2P), opacity (OP) and melting and glass transitions temperatures. The films produced were malleable and macroscopically homogeneous. The addition of 1% of lauric acid to the film of gelatin, triacetin and blend of palmitic and stearic acids (5.84 ± 0.31 gmm · m-2 dkPa) caused a slight decrease in WVP. The additions of 2.5% (5.70 ± 0.76 gmm · m-2 dkPa), 5% (5.38 ± 0.64 gmm · m-2 dkPa) and 10% (4.50 ± 0.55 gmm · m-2 dkPa) of lauric acid were sufficient to make a significant difference in the WVP at the higher levels used. As compared to the gelatin and triacetin film, the addition of lauric acid at all the concentrations studied resulted in a slight increase in the film solubility. The addition of hydrophobic substances to gelatin/triacetin films (15.26 ± 0.28 cm3 · μm · m-2 dkPa) favoured an increase in O2P permeability, this effect being greater in the films made from gelatin, triacetin, blend of palmitic and stearic acids and 10% lauric acid (24.48 ± 0.07 cm3 · μm · m-2 dkPa). The increasing addition of lauric acid significantly reduced the tensile strength and increased elongation of the films composed of gelatin, triacetin and blend that being more evident at the concentrations of 5% (67.58 ± 1.23 MPa and 11.45 ± 0.57%) and 10% (63.50 ± 1.56 MPa and 12.90 ± 0.57%). The addition of 1% (OP, 27%) and 10% (OP, 28%) of lauric acid induced no visible effect on the opacity of the films. The thermogrammes showed three transitions for the gelatin/triacetin/stearic-palmitic blend/1% lauric acid films (-57.42°C, 23.74°C and 44.11°C) and two for the gelatin/triacetin/stearic-palmitic acids blend/10% lauric acid films (-56.22°C and 17.35°C). As observed by DSC, the addition of fatty acids resulted in the appearance of more than one melting peak for all films in relation to the gelatin and triacetin film. © 2005 Wiley-VCH Verlag GmbH &amp; Co. KGaA.229143149(1995) ASTM, pp. E96-95(1995) ASTM, pp. D882(1990) ASTM, 1177, pp. D3985-81Baldwin, A., Nisperos, O., Hagenmaier, D., Baker, R.A., (1997) Food Technol., 51 (6), p. 56Bertan, L.C., Tanada-Palmu, P.S., Siani, A.C., Grosso, C.R.F., (2005) Food Hydrocol., 19 (1), p. 73Callegarin, F., Gallo, J.-A.Q., Debeaufort, F., (1997) Voilley.J.Am. Oil Chem. Soc., 74 (10), p. 1183Cherian, G., Gennadios, A., Weller, C., Chinachoti, P., (1995) Cereal Chem., 72 (1), p. 1Donhowe, I.G., Fennema, O., (1994) Edible Coating and Films to Improve Food Quality, p. 1. , J. M. Krotcha, E. A. Baldwin, M. O. Nisperos-Carriedo, Eds., Technomic Publishing Company Inc., LancasterFakhouri, F.M., Batista, J.A., Grosso, C.R.F., (2003) Braz. J. Food Technol., 6 (2), p. 301Gontard, N., Duchez, C., Cuq, J.-L., Guilbert, S., (1994) Int. J. Food Sci. Technol., 29, p. 50Kester, J.J., Fennema, O.R., (1986) Food Technol., 40 (12), p. 59Mchugh, T.H., (1996) Macromolecular Interactions in Food Technology, , N. Parris, A. Kato, L. K. Creamer, J. Pearce, EdsMchugh, T.H., Krochta, J.M., (1994) J. Am. Oil Chem. Soc., 71 (3), p. 312Pommet, M., Redl, A., Morel, M.-H., Guilbert, S., (2003) Polymer, 44 (1), p. 115Rhim, J.W., Wu, Y., Weller, C.L., Schinepf, M., (1999) J. Food Sci., 64 (1), p. 149Shellhammer, T.H., Krochta, J.M., (1997) J. Food Sci, 62 (2), p. 390Shih, F.F., (1996) Cereal Chem., 73 (3), p. 40
    corecore