7 research outputs found

    Pseudomonas aeruginosa utilises the host‐derived polyamine spermidine to facilitate antimicrobial tolerance

    Get PDF
    Pseudomonas aeruginosa undergoes diversification during infection of the cystic fibrosis (CF) lung. Understanding these changes requires model systems that capture the complexity of the CF lung environment. We previously identified loss-of-function mutations in the 2-component regulatory system sensor kinase gene pmrB in P. aeruginosa from CF lung infections and from experimental infection of mice. Here, we demonstrate that, while such mutations lowered in vitro minimum inhibitory concentrations for multiple antimicrobial classes, this was not reflected in increased antibiotic susceptibility in vivo. Loss of PmrB impaired aminoarabinose modification of LPS, increasing the negative charge of the outer membrane and promoting uptake of cationic antimicrobials. However, in vivo, this could be offset by increased membrane binding of other positively charged molecules present in lungs. The polyamine spermidine readily coated the surface of PmrB-deficient P. aeruginosa, reducing susceptibility to antibiotics that rely on charge differences to bind the outer membrane and increasing biofilm formation. Spermidine was elevated in lungs during P. aeruginosa infection in mice and during episodes of antimicrobial treatment in people with CF. These findings highlight the need to study antimicrobial resistance under clinically relevant environmental conditions. Microbial mutations carrying fitness costs in vitro may be advantageous during infection, where host resources can be utilized

    Timing and delivery route effects of cecal microbiome transplants on Salmonella Typhimurium infections in chickens: potential for in-hatchery delivery of microbial interventions.

    No full text
    BackgroundExposure to microbes early in life has long-lasting effects on microbial community structure and function of the microbiome. However, in commercial poultry settings chicks are reared as a single-age cohort with no exposure to adult birds which can have profound effects on microbiota development and subsequent pathogen challenge. Microbiota manipulation is a proven and promising strategy to help reduce pathogen load and transmission within broiler flocks. However, administration of microbiota transplant products in a hatchery setting may prove challenging. Effective administration strategies are dependent on key factors, such as; the age of chicks receiving interventions and mode of delivery. This study aimed to assess these two aspects to provide supporting evidence towards microbiome manipulation strategies for use in commercial hatcheries.ResultsManipulation of the microbiota between 4 and 72 h of hatch markedly reduced faecal shedding and colonisation with the foodborne pathogen Salmonella enterica serovar Typhimurium (ST4/74). Administration of transplant material via spray or gel drop delivery systems had minimal effect on the protection conferred with fewer birds in transplant groups shown to shed ST4/74 in the faeces compared to PBS-gavaged control birds. Analysis of the microbiome following transplantation demonstrated that all transplant groups had higher diversity and species richness than non-transplant groups during the first week of life and the early stages of infection with ST47/4.The relative abundance of the bacterium Faecalibacterium prausnitzii was significantly higher in CMT groups compared to PBS controls. The presence of F. prausnitzii was also shown to increase in PBS-challenged birds compared to unchallenged birds potentially indicating a role of this bacterium in limiting Salmonella infections.ConclusionsThis study demonstrated that administration of microbiome transplants, using methods that would align with hatchery practices, effectively reduced colonisation and shedding of Salmonella in chickens. Age of chicks at microbiome administration had limited effect on the diversity and composition of the microbiome and conferred protection against Salmonella infections. Traditional hatchery delivery systems, such as spray or gel-drop, are sufficient to transfer donor material, alter the microbiome and confer protection against Salmonella. This study helps highlight the opportunity for use of microbiome modification methods within the hatchery

    Isolation of genetically tractable most-wanted bacteria by metaparental mating

    No full text
    Metagenomics has rapidly advanced our inventory and appreciation of the genetic potential inherent to the gut microbiome. However it is widely accepted that two key constraints to further genetic dissection of the gut microbiota and host-microbe interactions have been our inability to recover new isolates from the human gut, and the paucity of genetically tractable gut microbes. To address this challenge we developed a modular RP4 mobilisable recombinant vector system and an approach termed metaparental mating to support the rapid and directed isolation of genetically tractable fastidious gut bacteria. Using this approach we isolated transconjugants affiliated with Clostridium cluster IV (Faecalibacterium and Oscillibacter spp.), Clostridium cluster XI (Anaerococcus) and Clostridium XIVa (Blautia spp.) and group 2 ruminococci amongst others, and demonstrated that the recombinant vectors were stably maintained in their recipient hosts. By a similar approach we constructed fluorescently labelled bacterial transconjugants affiliated with Clostridium cluster IV (including Flavonifractor and Pseudoflavonifractor spp.), Clostridium XIVa (Blautia spp.) and Clostridium cluster XVIII (Clostridium ramosum) that expressed a flavin mononucleotide-based reporter gene (evoglow-C-Bs2). Our approach will advance the integration of bacterial genetics with metagenomics and realize new directions to support a more mechanistic dissection of host-microbe associations relevant to human health and disease

    Airway metabolic profiling during Streptococcus pneumoniae infection identifies branched chain amino acids as signatures of upper airway colonisation.

    Get PDF
    Streptococcus pneumoniae is a leading cause of community-acquired pneumonia and bacteraemia and is capable of remarkable phenotypic plasticity, responding rapidly to environmental change. Pneumococcus is a nasopharyngeal commensal, but is responsible for severe, acute infections following dissemination within-host. Pneumococcus is adept at utilising host resources, but the airways are compartmentalised and those resources are not evenly distributed. Challenges and opportunities in metabolite acquisition within different airway niches may contribute to the commensal-pathogen switch when pneumococcus moves from nasopharynx into lungs. We used NMR to characterise the metabolic landscape of the mouse airways, in health and during infection. Using paired nasopharynx and lung samples from naïve animals, we identified fundamental differences in metabolite bioavailability between airway niches. Pneumococcal pneumonia was associated with rapid and dramatic shifts in the lung metabolic environment, whilst nasopharyngeal carriage led to only modest change in upper airway metabolite profiles. NMR spectra derived from the nasopharynx of mice infected with closely-related pneumococcal strains that differ in their colonisation potential could be distinguished from one another using multivariate dimensionality reduction methods. The resulting models highlighted that increased branched-chain amino acid (BCAA) bioavailability in nasopharynx is a feature of infection with the high colonisation potential strain. Subsequent analysis revealed increased expression of BCAA transport genes and increased intracellular concentrations of BCAA in that same strain. Movement from upper to lower airway environments is associated with shifting challenges in metabolic resource allocation for pneumococci. Efficient biosynthesis, liberation or acquisition of BCAA is a feature of adaptation to nasopharyngeal colonisation

    Reservoirs of resistance: polymyxin resistance in veterinary-associated companion animal isolates of Pseudomonas aeruginosa

    No full text
    is an opportunistic pathogen and a major cause of infections. Widespread resistance in human infections are increasing the use of last resort antimicrobials such as polymyxins. However, these have been used for decades in veterinary medicine. Companion animals are an understudied source of antimicrobial resistant isolates. This study evaluated the susceptibility of veterinary isolates to polymyxins to determine whether the veterinary niche represents a potential reservoir of resistance genes for pathogenic bacteria in both animals and humans.Clinical isolates (n=24) from UK companion animals were compared for antimicrobial susceptibility to a panel of human-associated isolates (n=37). Minimum inhibitory concentration (MIC) values for polymyxin B and colistin in the companion animals was significantly higher than in human isolates (P=0.033 and P=0.013, respectively). Genotyping revealed that the veterinary isolates were spread throughout the population, with shared array types from human infections such as keratitis and respiratory infections, suggesting the potential for zoonotic transmission. Whole genome sequencing revealed mutations in genes associated with polymyxin resistance and other antimicrobial resistance-related genes.The high levels of resistance to polymyxin shown here, along with genetic similarities between some human and animal isolates, together suggest a need for sustained surveillance of this veterinary niche as a potential reservoir for resistant, clinically relevant bacteria in both animals and humans
    corecore