15,727 research outputs found

    Mapping class group and U(1) Chern-Simons theory on closed orientable surfaces

    Full text link
    U(1) Chern-Simons theory is quantized canonically on manifolds of the form M=R×ΣM=\mathbb{R}\times\Sigma, where Σ\Sigma is a closed orientable surface. In particular, we investigate the role of mapping class group of Σ\Sigma in the process of quantization. We show that, by requiring the quantum states to form representation of the holonomy group and the large gauge transformation group, both of which are deformed by quantum effect, the mapping class group can be consistently represented, provided the Chern-Simons parameter kk satisfies an interesting quantization condition. The representations of all the discrete groups are unique, up to an arbitrary sub-representation of the mapping class group. Also, we find a k↔1/kk\leftrightarrow1/k duality of the representations.Comment: 17 pages, 3 figure

    QCD corrections to single slepton production at hadron colliders

    Full text link
    We evaluate the cross section for single slepton production at hadron colliders in supersymmetric theories with R-parity violating interactions to the next-to-leading order in QCD. We obtain fully differential cross section by using the phase space slicing method. We also perform soft-gluon resummation to all order in αs\alpha_s of leading logarithm to obtain a complete transverse momentum spectrum of the slepton. We find that the full transverse momentum spectrum is peaked at a few GeV, consistent with the early results for Drell-Yan production of lepton pairs. We also consider the contribution from gluon fusion via quark-triangle loop diagrams dominated by the bb-quark loop. The cross section of this process is significantly smaller than that of the tree-level process induced by the initial bbˉb\bar{b} annihilation.Comment: one new reference is adde

    Extended Calculations of Spectroscopic Data: Energy Levels, Lifetimes and Transition rates for O-like ions from Cr XVII to Zn XXIII

    Full text link
    Employing two state-of-the-art methods, multiconfiguration Dirac--Hartree--Fock and second-order many-body perturbation theory, the excitation energies and lifetimes for the lowest 200 states of the 2s22p42s^2 2p^4, 2s2p52s 2p^5, 2p62p^6, 2s22p33s2s^2 2p^3 3s, 2s22p33p2s^2 2p^3 3p, 2s22p33d2s^2 2p^3 3d, 2s2p43s2s 2p^4 3s, 2s2p43p2s 2p^4 3p, and 2s2p43d2s 2p^4 3d configurations, and multipole (electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2)) transition rates, line strengths, and oscillator strengths among these states are calculated for each O-like ion from Cr XVII to Zn XXIII. Our two data sets are compared with the NIST and CHIANTI compiled values, and previous calculations. The data are accurate enough for identification and deblending of new emission lines from the sun and other astrophysical sources. The amount of data of high accuracy is significantly increased for the n=3n = 3 states of several O-like ions of astrophysics interest, where experimental data are very scarce

    Extended calculations of energy levels, radiative properties, AJA_{J}, BJB_{J} hyperfine interaction constants, and Land\'e gJg_{J}-factors for nitrogen-like \mbox{Ge XXVI}

    Get PDF
    Employing two state-of-the-art methods, multiconfiguration Dirac--Hartree--Fock and second-order many-body perturbation theory, highly accurate calculations are performed for the lowest 272 fine-structure levels arising from the 2s22p32s^{2} 2p^{3}, 2s2p42s 2p^{4}, 2p52p^{5}, 2s22p23l2s^{2} 2p^{2} 3l~(l=s,p,dl=s,p,d), 2s2p33l2s 2p^{3}3l (l=s,p,dl=s,p,d), and 2p43l2p^{4} 3l (l=s,p,dl=s,p,d) configurations in nitrogen-like Ge XXVI. Complete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Land\'e gJg_{J}-factors, and E1, E2, M1, M2 line strengths, oscillator strengths, and transition rates among these 272 levels are provided. Comparisons are made between the present two data sets, as well as with other available experimental and theoretical values. The present data are accurate enough for identification and deblending of emission lines involving the n=3n=3 levels, and are also useful for modeling and diagnosing fusion plasmas

    Iron pnictides as a new setting for quantum criticality

    Full text link
    Two major themes in the physics of condensed matter are quantum critical phenomena and unconventional superconductivity. These usually occur in the context of competing interactions in systems of strongly-correlated electrons. All this interesting physics comes together in the behavior of the recently discovered iron pnictide compounds that have generated enormous interest because of their moderately high-temperature superconductivity. The ubiquity of antiferromagnetic ordering in their phase diagrams naturally raises the question of the relevance of magnetic quantum criticality, but the answer remains uncertain both theoretically and experimentally. Here we show that the undoped iron pnictides feature a novel type of magnetic quantum critical point, which results from a competition between electronic localization and itinerancy. Our theory provides a mechanism to understand the experimentally-observed variation of the ordered moment among the undoped iron pnictides. We suggest P substitution for As in the undoped iron pnictides as a means to access this new example of magnetic quantum criticality in an unmasked fashion. Our findings point to the iron pnictides as a much-needed new setting for quantum criticality, one that offers a new set of control parameters.Comment: (v3) New abstract, more explanatory material, accepted for PNA

    Analysis of combining ability and heredity parameters of glucosinolates in Chinese kale

    Get PDF
    The study was carried out with six Chinese kale lines as materials. Complete diallel crossing was designed with 6 × 6 to calculate the combining ability and the main genetic parameters. The results are as follows: The GCA effect of P1, P2 and P5 was excellent. They were used as parants to get hybrids, the heterosis of anti-cancer glucosinolates of their hybrid was very high. By analyzing the SCA effects, 1 × 2 was an outstanding hybrid. The broad sense heritability of the main GSs were relatively higher, and the narrow sense heritability were lower, so the potential of heterosis was bigger.Keywords: Chinese kale, glucosinolate, combining ability, heritability, heterosi

    Stability of Excited Dressed States with Spin-Orbit Coupling

    Full text link
    We study the decay behaviors of ultracold atoms in metastable states with spin-orbit coupling (SOC), and demonstrate that there are two SOC-induced decay mechanisms. One arises from the trapping potential and the other is due to interatomic collision. We present general schemes for calculating decay rates from these two mechanisms, and illustrate how the decay rates can be controlled by experimental parameters.We experimentally measure the decay rates over a broad parameter region, and the results agree well with theoretical calculations. This work provides an insight for both quantum simulation involving metastable dressed states and studies on few-body problems with SO coupling.Comment: 4.5 pages, 4 figures, the latest versio

    Electronic nematic correlations in the stress free tetragonal state of BaFe2−x_{2-x}Nix_{x}As2_{2}

    Full text link
    We use transport and neutron scattering to study electronic, structural, and magnetic properties of the electron-doped BaFe2−x_{2-x}Nix_xAs2_2 iron pnictides in the external stress free detwinned state. Using a specially designed in-situ mechanical detwinning device, we demonstrate that the in-plane resistivity anisotropy observed in the uniaxial strained tetragonal state of BaFe2−x_{2-x}Nix_xAs2_2 below a temperature T∗T^\ast, previously identified as a signature of the electronic nematic phase, is also present in the stress free tetragonal phase below T∗∗T^{\ast\ast} (<T∗<T^\ast). By carrying out neutron scattering measurements on BaFe2_2As2_2 and BaFe1.97_{1.97}Ni0.03_{0.03}As2_2, we argue that the resistivity anisotropy in the stress free tetragonal state of iron pnictides arises from the magnetoelastic coupling associated with antiferromagnetic order. These results thus indicate that the local lattice distortion and nematic spin correlations are responsible for the resistivity anisotropy in the tetragonal state of iron pnictides.Comment: 5 pages, 4 figure

    WideSee: towards wide-area contactless wireless sensing

    Get PDF
    Contactless wireless sensing without attaching a device to the target has achieved promising progress in recent years. However, one severe limitation is the small sensing range. This paper presents WideSee to realize wide-area sensing with only one transceiver pair. WideSee utilizes the LoRa signal to achieve a larger range of sensing and further incorporates drone's mobility to broaden the sensing area. WideSee presents solutions across software and hardware to overcome two aspects of challenges for wide-range contactless sensing: (i) the interference brought by the device mobility and LoRa's high sensitivity; and (ii) the ambiguous target information such as location when employing just a single pair of transceivers. We have developed a working prototype of WideSee for human target detection and localization that are especially useful in emergency scenarios such as rescue search, and evaluated WideSee with both controlled experiments and the field study in a high-rise building. Extensive experiments demonstrate the great potential of WideSee for wide-area contactless sensing with a single LoRa transceiver pair hosted on a drone
    • …
    corecore