968 research outputs found

    Overarching framework between Gaussian quantum discord and Gaussian quantum illumination

    Full text link
    We cast the problem of illuminating an object in a noisy environment into a communication protocol. A probe is sent into the environment, and the presence or absence of the object constitutes a signal encoded on the probe. The probe is then measured to decode the signal. We calculate the Holevo information and bounds to the accessible information between the encoded and received signal with two different Gaussian probes---an Einstein-Podolsky-Rosen (EPR) state and a coherent state. We also evaluate the Gaussian discord consumed during the encoding process with the EPR probe. We find that the Holevo quantum advantage, defined as the difference between the Holevo information obtained from the EPR and coherent state probes, is approximately equal to the discord consumed. These quantities become exact in the typical illumination regime of low object reflectivity and low probe energy. Hence we show that discord is the resource responsible for the quantum advantage in Gaussian quantum illumination.Comment: 12 pages, 8 figure

    Explicit capacity-achieving receivers for optical communication and quantum reading

    Get PDF
    An important practical open question has been to design explicit, structured optical receivers that achieve the Holevo limit in the contexts of optical communication and “quantum reading.” The Holevo limit is an achievable rate that is higher than the Shannon limit of any known optical receiver. We demonstrate how a sequential decoding approach can achieve the Holevo limit for both of these settings. A crucial part of our scheme for both settings is a non-destructive “vacuum-or-not” measurement that projects an n-symbol modulated codeword onto the n-fold vacuum state or its orthogonal complement, such that the post-measurement state is either the n-fold vacuum or has the vacuum removed from the support of the n symbols' joint quantum state. The sequential decoder for optical communication requires the additional ability to perform multimode optical phase-space displacements - realizable using a beamsplitter and a laser, while the sequential decoder for quantum reading also requires the ability to perform phase-shifting (realizable using a phase plate) and online squeezing (a phase-sensitive amplifier)

    SU(3) Quantum Interferometry with single-photon input pulses

    Full text link
    We develop a framework for solving the action of a three-channel passive optical interferometer on single-photon pulse inputs to each channel using SU(3) group-theoretic methods, which can be readily generalized to higher-order photon-coincidence experiments. We show that features of the coincidence plots vs relative time delays of photons yield information about permanents, immanants, and determinants of the interferometer SU(3) matrix

    Quantum Illumination with Gaussian States

    Get PDF
    An optical transmitter irradiates a target region containing a bright thermal-noise bath in which a low-reflectivity object might be embedded. The light received from this region is used to decide whether the object is present or absent. The performance achieved using a coherent-state transmitter is compared with that of a quantum illumination transmitter, i.e., one that employs the signal beam obtained from spontaneous parametric downconversion (SPDC). By making the optimum joint measurement on the light received from the target region together with the retained SPDC idler beam, the quantum illumination system realizes a 6 dB advantage in error probability exponent over the optimum reception coherent-state system. This advantage accrues despite there being no entanglement between the light collected from the target region and the retained idler beam.Comment: 4 pages, 1 figur
    • …
    corecore