33 research outputs found

    Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease

    Get PDF
    BACKGROUND: The cholesteryl ester transfer protein inhibitor evacetrapib substantially raises the high-density lipoprotein (HDL) cholesterol level, reduces the low-density lipoprotein (LDL) cholesterol level, and enhances cellular cholesterol efflux capacity. We sought to determine the effect of evacetrapib on major adverse cardiovascular outcomes in patients with high-risk vascular disease. METHODS: In a multicenter, randomized, double-blind, placebo-controlled phase 3 trial, we enrolled 12,092 patients who had at least one of the following conditions: an acute coronary syndrome within the previous 30 to 365 days, cerebrovascular atherosclerotic disease, peripheral vascular arterial disease, or diabetes mellitus with coronary artery disease. Patients were randomly assigned to receive either evacetrapib at a dose of 130 mg or matching placebo, administered daily, in addition to standard medical therapy. The primary efficacy end point was the first occurrence of any component of the composite of death from cardiovascular causes, myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina. RESULTS: At 3 months, a 31.1% decrease in the mean LDL cholesterol level was observed with evacetrapib versus a 6.0% increase with placebo, and a 133.2% increase in the mean HDL cholesterol level was seen with evacetrapib versus a 1.6% increase with placebo. After 1363 of the planned 1670 primary end-point events had occurred, the data and safety monitoring board recommended that the trial be terminated early because of a lack of efficacy. After a median of 26 months of evacetrapib or placebo, a primary end-point event occurred in 12.9% of the patients in the evacetrapib group and in 12.8% of those in the placebo group (hazard ratio, 1.01; 95% confidence interval, 0.91 to 1.11; P=0.91). CONCLUSIONS: Although the cholesteryl ester transfer protein inhibitor evacetrapib had favorable effects on established lipid biomarkers, treatment with evacetrapib did not result in a lower rate of cardiovascular events than placebo among patients with high-risk vascular disease. (Funded by Eli Lilly; ACCELERATE ClinicalTrials.gov number, NCT01687998 .)

    Promotion of Ceria Catalysts by Precious Metals: Changes in Nature of the Interaction under Reducing and Oxidizing Conditions

    No full text
    By depositing ceria over supported precious metal (PM) catalysts and characterizing them with in situ diffuse reflectance UV (DR UV) and in situ Raman spectroscopy, we have been able to prove a direct correlation between a decrease in ceria band gap and the work function of the metal under reducing conditions. The PM–ceria interaction results in changes on the ceria side of the metal–ceria interface, such that the degree of oxygen vacancy formation on the ceria surface also correlates with the precious metal work function. Nevertheless, conclusive evidence for a purely electronic interaction could not be provided by X-ray photoelectron spectroscopy (XPS) analysis. On the contrary, the results highlight the complexity of the PM–ceria interaction by supporting a spillover mechanism resulting from the electronic interaction under reducing conditions. Under oxidizing conditions, another effect has been observed, namely, a structural modification of ceria induced by the presence of PM cations. In particular, we have been able to demonstrate by in situ Raman spectroscopy that, depending on the PM ionic radius, it is possible to create PM–ceria solid solutions. We observed that this structural modification prevails under an oxidizing atmosphere, whereas electronic and chemical interactions take place under reducing conditions

    Caenorhabditis elegans FOS-1 and JUN-1 Regulate plc-1 Expression in the Spermatheca to Control Ovulation

    No full text
    Fos and Jun are components of activator protein-1 (AP-1) and play crucial roles in the regulation of many cellular, developmental, and physiological processes. Caenorhabditis elegans fos-1 has been shown to act in uterine and vulval development. Here, we provide evidence that C. elegans fos-1 and jun-1 control ovulation, a tightly regulated rhythmic program in animals. Knockdown of fos-1 or jun-1 blocks dilation of the distal spermathecal valve, a critical step for the entry of mature oocytes into the spermatheca for fertilization. Furthermore, fos-1 and jun-1 regulate the spermathecal-specific expression of plc-1, a gene that encodes a phospholipase C (PLC) isozyme that is rate-limiting for inositol triphosphate production and ovulation, and overexpression of PLC-1 rescues the ovulation defect in fos-1(RNAi) worms. Unlike fos-1, regulation of ovulation by jun-1 requires genetic interactions with eri-1 and lin-15B, which are involved in the RNA interference pathway and chromatin remodeling, respectively. At least two isoforms of jun-1 are coexpressed with fos-1b in the spermatheca, and different AP-1 dimers formed between these isoforms have distinct effects on the activation of a reporter gene. These findings uncover a novel role for FOS-1 and JUN-1 in the reproductive system and establish C. elegans as a model for studying AP-1 dimerization
    corecore