76 research outputs found

    Myostatin Is Elevated in Congenital Heart Disease and After Mechanical Unloading

    Get PDF
    Myostatin is a negative regulator of skeletal muscle mass whose activity is upregulated in adult heart failure (HF); however, its role in congenital heart disease (CHD) is unknown.We studied myostatin and IGF-1 expression via Western blot in cardiac tissue at varying degrees of myocardial dysfunction and after biventricular support in CHD by collecting myocardial biopsies from four patient cohorts: A) adult subjects with no known cardiopulmonary disease (left ventricle, LV), (Adult Normal), (n = 5); B) pediatric subjects undergoing congenital cardiac surgery with normal RV size and function (right ventricular outflow tract, RVOT), (n = 3); C) pediatric subjects with worsening but hemodynamically stable LV failure [LV and right ventricle (LV, RV,)] with biopsy collected at the time of orthotopic heart transplant (OHT), (n = 7); and D) pediatric subjects with decompensated bi-ventricular failure on BiVAD support with biopsy collected at OHT (LV, RV, BiVAD), (n = 3).The duration of HF was longest in OHT patients compared to BIVAD. The duration of BiVAD support was 4.3±1.9 days. Myostatin expression was significantly increased in LV-OHT compared to RV-OHT and RVOT, and was increased more than double in decompensated biventricular HF (BiVAD) compared to both OHT and RVOT. An increased myostatin/IGF-1 ratio was associated with ventricular dysfunction.Myostatin expression in increased in CHD, and the myostatin/IGF-1 ratio increases as ventricular function deteriorates. Future investigation is necessary to determine if restoration of the physiologic myostatin/IGF-1 ratio has therapeutic potential in HF

    Calpain Cleavage of Brain Glutamic Acid Decarboxylase 65 Is Pathological and Impairs GABA Neurotransmission

    Get PDF
    Previously, we have shown that the GABA synthesizing enzyme, L-glutamic acid decarboxylase 65 (GAD65) is cleaved to form its truncated form (tGAD65) which is 2–3 times more active than the full length form (fGAD65). The enzyme responsible for cleavage was later identified as calpain. Calpain is known to cleave its substrates either under a transient physiological stimulus or upon a sustained pathological insult. However, the precise role of calpain cleavage of fGAD65 is poorly understood. In this communication, we examined the cleavage of fGAD65 under diverse pathological conditions including rats under ischemia/reperfusion insult as well as rat brain synaptosomes and primary neuronal cultures subjected to excessive stimulation with high concentration of KCl. We have shown that the formation of tGAD65 progressively increases with increasing stimulus concentration both in rat brain synaptosomes and primary rat embryo cultures. More importantly, direct cleavage of synaptic vesicle - associated fGAD65 by calpain was demonstrated and the resulting tGAD65 bearing the active site of the enzyme was detached from the synaptic vesicles. Vesicular GABA transport of the newly synthesized GABA was found to be reduced in calpain treated SVs. Furthermore, we also observed that the levels of tGAD65 in the focal cerebral ischemic rat brain tissue increased corresponding to the elevation of local glutamate as indicated by microdialysis. Moreover, the levels of tGAD65 was also proportional to the degree of cell death when the primary neuronal cultures were exposed to high KCl. Based on these observations, we conclude that calpain-mediated cleavage of fGAD65 is pathological, presumably due to decrease in the activity of synaptic vesicle - associated fGAD65 resulting in a decrease in the GABA synthesis - packaging coupling process leading to reduced GABA neurotransmission

    Adult-Age Inflammatory Pain Experience Enhances Long-Term Pain Vigilance in Rats

    Get PDF
    Background: Previous animal studies have illustrated a modulatory effect of neonatal pain experience on subsequent painrelated behaviors. However, the relationship between chronic pain status in adulthood and future pain perception remains unclear. Methodology/Principal Findings: In the current study, we investigated the effects of inflammatory pain experience on subsequent formalin-evoked pain behaviors and fear conditioning induced by noxious stimulation in adult rats. Our results demonstrated an increase of the second but not the first phase of formalin-induced pain behaviors in animals with a history of inflammatory pain that have recovered. Similarly, rats with persistent pain experience displayed facilitated acquisition and prolonged retention of pain-related conditioning. These effects of prior pain experience on subsequent behavior were prevented by repeated morphine administration at an early stage of inflammatory pain. Conclusions/Significance: These results suggest that chronic pain diseases, if not properly and promptly treated, may have a long-lasting impact on processing and perception of environmental threats. This may increase the susceptibility of patients to subsequent pain-related disorders, even when chronic pain develops in adulthood. These data highlight th

    Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay

    Get PDF
    BACKGROUND: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. RESULTS: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1`s role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3` UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. CONCLUSIONS: Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions

    Not Available

    No full text
    Not AvailablePorcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1β (nsp1β) is a multifunctional viral protein, which is involved in suppressing the host innate immune response and activating a unique -2/-1 programmed ribosomal frameshifting (PRF) signal for the expression of frameshifting products. In this study, site-directed mutagenesis analysis showed that the R128A or R129A mutation introduced into a highly conserved motif ((123)GKYLQRRLQ(131)) reduced the ability of nsp1β to suppress interferon beta (IFN-β) activation and also impaired nsp1β's function as a PRF transactivator. Three recombinant viruses, vR128A, vR129A, and vRR129AA, carrying single or double mutations in the GKYLQRRLQ motif were characterized. In comparison to the wild-type (WT) virus, vR128A and vR129A showed slightly reduced growth abilities, while the vRR129AA mutant had a significantly reduced growth ability in infected cells. Consistent with the attenuated growth phenotype in vitro, pigs infected with nsp1β mutants had lower levels of viremia than did WT virus-infected pigs. Compared to the WT virus in infected cells, all three mutated viruses stimulated high levels of IFN-α expression and exhibited a reduced ability to suppress the mRNA expression of selected interferon-stimulated genes (ISGs). In pigs infected with nsp1β mutants, IFN-α production was increased in the lungs at early time points postinfection, which was correlated with increased innate NK cell function. Furthermore, the augmented innate response was consistent with the increased production of IFN-γ in pigs infected with mutated viruses. These data demonstrate that residues R128 and R129 are critical for nsp1β function and that modifying these key residues in the GKYLQRRLQ motif attenuates virus growth ability and improves the innate and adaptive immune responses in infected animalsNot Availabl

    Not Available

    No full text
    Not AvailablePorcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1β (nsp1β) is a multifunctional viral protein, which is involved in suppressing the host innate immune response and activating a unique -2/-1 programmed ribosomal frameshifting (PRF) signal for the expression of frameshifting products. In this study, site-directed mutagenesis analysis showed that the R128A or R129A mutation introduced into a highly conserved motif ((123)GKYLQRRLQ(131)) reduced the ability of nsp1β to suppress interferon beta (IFN-β) activation and also impaired nsp1β's function as a PRF transactivator. Three recombinant viruses, vR128A, vR129A, and vRR129AA, carrying single or double mutations in the GKYLQRRLQ motif were characterized. In comparison to the wild-type (WT) virus, vR128A and vR129A showed slightly reduced growth abilities, while the vRR129AA mutant had a significantly reduced growth ability in infected cells. Consistent with the attenuated growth phenotype in vitro, pigs infected with nsp1β mutants had lower levels of viremia than did WT virus-infected pigs. Compared to the WT virus in infected cells, all three mutated viruses stimulated high levels of IFN-α expression and exhibited a reduced ability to suppress the mRNA expression of selected interferon-stimulated genes (ISGs). In pigs infected with nsp1β mutants, IFN-α production was increased in the lungs at early time points postinfection, which was correlated with increased innate NK cell function. Furthermore, the augmented innate response was consistent with the increased production of IFN-γ in pigs infected with mutated viruses. These data demonstrate that residues R128 and R129 are critical for nsp1β function and that modifying these key residues in the GKYLQRRLQ motif attenuates virus growth ability and improves the innate and adaptive immune responses in infected animalsNot Availabl

    Not Available

    No full text
    Not AvailablePorcine reproductive and respiratory syndrome (PRRS) is caused by PRRS virus (PRRSV), which infects primarily the respiratory tract of pigs. Thus intranasal (IN) delivery of a potent vaccine-adjuvant formulation is promising. In this study, PRRS-MLV (VR2332) was coadministered ± an adjuvant Mycobacterium vaccae whole cell lysate or CpG ODN through intramuscular (IM) or IN route as a mist, and challenged with a heterologous PRRSV 1-4-4 IN at 42 days post-vaccination (dpv). At 14 and 26 dpv, vaccine viral RNA copies were one log greater in the plasma of PRRS-MLV IM compared to IN vaccinated pigs, and the infectious replicating vaccine virus was detected only in the IM group. In PRRS-MLV ± adjuvant IM vaccinated pigs, reduced viral RNA load and absence of the replicating challenged virus was observed at 7, 10 and 14 days post-challenge (dpc). At 14 dpc, in BAL fluid ≥ 5 log viral RNA copies were detected in all the pig groups, but the replicating challenged virus was undetectable only in IM groups. Immunologically, virus neutralizing antibody titers in the plasma of IM (but not IN) vaccine groups was ≥ 8 against the vaccine and challenged viruses. At 26 dpv, PRRS-MLV IM (without adjuvant) received pigs had significantly increased population of CD4 and CD8 T cells in PBMC. At 14 dpc, relatively increased population of IFN-γ( + ) total lymphocytes, NK, CD4, CD8 and γδ T cells were observed in the MLV-IM group. In conclusion, PRRS-MLV IM vaccination induced the virus specific T cell response in pigs, but still it is required to improve its cross-protective efficacy.Not Availabl

    Not Available

    No full text
    Not AvailableWe have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based onbiodegradable polyanhydride nanoparticles delivery in mice. In the present study, we evaluated the effi-cacy of 200 nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV)as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigswere vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine), and efficacy was evaluated against a heterologous zoonotic virulentSwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses,antigen-specific proliferation of peripheral blood mononuclear cells, gross and microscopic lung lesions,and virus load in the respiratory tract were compared among the groups of animals. Our pre-challengeresults indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increasedthe frequency of CD4+CD8aa+T helper and CD8+cytotoxic T cells in peripheral blood mononuclear cells.KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition, pigsimmunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals.Immunologically, increased IFN-csecreting T lymphocyte populations against both the vaccine and chal-lenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunizedwith KAg alone. However, in the KAg nanovaccine-immunized pigs, hemagglutination inhibition, IgGand IgA antibody responses, and virus neutralization titers were comparable to that in the animals immu-nized with KAg alone. Overall, our data indicated that intranasal delivery of polyanhydride-based SwIAVnanovaccine augmented antigen-specific cellular immune response in pigs, with promise to induce cross-protective immunityNot Availabl

    Not Available

    No full text
    Not AvailableSwine influenza virus (SwIV) causes considerable economic loss to pig industry, and some SwIV are zoonotic. This study was conducted to evaluate the cross-protective efficacy of PLGA (poly lactic-co-glycolic acid) nanoparticles (NPs) encapsulated SwIV vaccine in pigs. Killed SwIV H1N2 (δ lineage) antigens (KAg) were encapsulated in PLGA NPs of 200–300 nm (PLGA-KAg NPs), and influenza antibody-free pigs were prime-boost vaccinated intranasally as mist and challenged using a heterologous, virulent and zoonotic SwIV H1N1 (γ lineage). PLGA-KAg NPs induced maturation of pig macrophages and dendritic cells in vitro. In vaccinated pigs, PLGA-KAg NPs induced antigen specific lymphocyte proliferation and enhanced the frequency of T-helper/memory cells and cytotoxic T cells in peripheral blood mononuclear cells (PBMCs). In virus challenged pigs, the PLGA-KAg NPs vaccine rescued virus induced clinical fever, reduced the gross lung pathology, reduced the virus load in the lung sections with complete clearance of the virus from the lungs of most of the pigs; but the nasal virus shedding was not reduced. Immunologically, at post-challenge day 6 in a recall response in PBMCs of PLGA KAg NPs vaccinated pigs, a significant increase in IFN-γ secreting T cells against both vaccine and challenge viruses were detected. However, humoral immune response in those pigs was not augmented. In conclusion, intranasal delivery of PLGA NPs based SwIV induced cross-protective response through specific cell-mediated response. Future studies are aimed at boosting the mucosal antibody response.Not Availabl
    corecore