44 research outputs found

    A Comparative Analysis of Application of Genetic Algorithm and Particle Swarm Optimization in Solving Traveling Tournament Problem (TTP)

    Get PDF
    Traveling Tournament Problem (TTP) has been a major area of research due to its huge application in developing smooth and healthy match schedules in a tournament. The primary objective of a similar problem is to minimize the travel distance for the participating teams. This would incur better quality of the tournament as the players would experience least travel; hence restore better energy level. Besides, there would be a great benefit to the tournament organizers from the economic point of view as well. A well constructed schedule, comprising of diverse combinations of the home and away matches in a round robin tournament would keep the fans more attracted, resulting in turnouts in a large number in the stadiums and a considerable amount of revenue generated from the match tickets. Hence, an optimal solution to the problem is necessary from all respects; although it becomes progressively harder to identify the optimal solution with increasing number of teams. In this work, we have described how to solve the problem using Genetic algorithm and particle swarm optimization

    Can somatostatin control acute bleeding from oesophageal varices in Schistosoma mansoni patients?[ISRCTN63456799]

    Get PDF
    BACKGROUND: Management of patients with bleeding oesophageal varices comprises of mainly diagnostic endoscopy, sclerotherapy and band ligation. One of the major problems to do any of the above is the active bleeding which makes any intervention difficult. The neuropeptide hormone somatostatin administered exogenously has caused a reduction in portal hypertension and variceal bleeding in patients suffering from liver cirrhosis. We believe that the symptomatic use of somatostatin for variceal bleeding in Schistosoma mansoni infected subjects can reduce bleeding, thereby alleviating the pathology caused by schistosomiasis. METHODS/DESIGN: We herein present a study protocol for establishing this neuropeptide as a potential therapeutic agent in schistosomiasis. Adolescent subjects, age range varying from 12–17 years will be selected, based on several inclusion criteria, most important being infection with Schistosoma mansoni with bleeding from oesophageal varices in the last 24 hours. One group of schistosomiasis patients will be treated with somatostatin and praziquantel, the other with propanolol and praziquantel. Survival graphs will be set up to correlate somatostatin administration with survival time. A two part questionnaire will be set up to control treatment outcomes. The pre-treatment part of the clinical questionnaire will identify inclusion criteria questions, the post-treatment part of the questionnaire will identify treatment outcomes. DISCUSSION: We expect that the administration of somatostatin as a bolus followed by a 24 hour long infusion, will stop bleeding immediately, delay rebleeding as compared to the control study group and delay mortality in the somatostatin treated subjects

    Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone marrow-derived stromal cells (MSC) are attractive targets for <it>ex vivo </it>cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord.</p> <p>Results</p> <p>First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While <it>in vivo </it>EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, <it>in vivo </it>NT3 mRNA expression by hMSC-NT3 cells and <it>in vivo </it>EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed <it>in vivo </it>decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants.</p> <p>Conclusion</p> <p>In this study, we demonstrate that genetically modified hMSC lines can survive in healthy rat spinal cord over at least 3 weeks by using adequate immune suppression and can serve as vehicles for transgene expression. However, before genetically modified hMSC can potentially be used in a clinical setting to treat spinal cord injuries, more research on standardisation of hMSC culture and genetic modification needs to be done in order to prevent tumour formation and transgene silencing <it>in vivo</it>.</p

    The therapeutic effect of the neuropeptide hormone somatostatin on Schistosoma mansoni caused liver fibrosis

    Get PDF
    BACKGROUND: The neuropeptide somatostatin is one of the major regulatory peptides in the central nervous system and the digestive tract. Our recent work has delineated an association between fibrosis and low levels of endogenous somatostatin plasma levels in Schistosoma mansoni infected subjects. Based on these results this paper explores the therapeutic potential of somatostatin in a mouse model of hepatic fibrosis associated with S. mansoni infections. METHODS: Groups of outbred Swiss mice were infected with 100 S. mansoni cercariae, infection maintained till weeks 10 or 14, and then somatostatin therapy delivered in two regimens – Either a one or a two-day treatment. All animals were sacrificed one week after therapy and controlled for liver, spleen and total body weight. Circulating somatostatin levels in mice plasma were measured at the time of sacrifice by means of a radio-immuno assay. GraphPad Prism(® )was used for statistical calculations. RESULTS: Somatostatin administration showed little toxicity, probably due to its short half-life. Total liver and spleen weights of S. mansoni infected animals increased over time, with no changes observed due to somatostatin therapy. Total body weights were decreased after infection but were not affected by somatostatin therapy. Snap frozen liver sections were stained with haematoxylin-eosin or Masson's trichrome to study parasite count, hepatocyte status, granuloma size and cellularity. After somatostatin treatment mean egg counts per liver section (43.76 ± 3.56) were significantly reduced as compared to the egg counts in untreated mice after 10 weeks of infection (56.01 ± 3.34) (P = 0.03). Similar significant reduction in parasite egg counts were also observed after somatostatin treatment at 14 weeks of infection (56.62 ± 3.02) as compared to untreated animals (69.82 ± 2.77)(P = 0.006). Fibrosis was assessed from the spectrophotometric determination of tissue hydroxyproline. Infection with S. mansoni caused increased hydroxyproline levels (9.37 ± 0.63 μmol at wk10; 9.65 ± 0.96 μmol at wk14) as compared to uninfected animals (1.06 ± 0.10 μmol). This significant increase in collagen content (P = 0.01; 0.007 respectively) marks the fibrosis observed at these time points. Treatment with somatostatin resulted in a significant decrease in hydroxyproline levels both at wk10 (4.76 ± 0.58 μmol) and at wk14 (5.8 ± 1.13 μmol) (P = 0.01; 0.03 respectively). Endogenous somatostatin levels were increased at wk10 (297 ± 37.24 pg/ml) and wk14 (206 ± 13.30 pg/ml) of infection as compared to uninfected mice (119 ± 11.99 pg/ml) (P = 0.01; 0.008 respectively). Circulating somatostatin levels in infected animals were not significantly affected by somatostatin treatment. Hepatocyte status remained unaltered and granulomas were not remarkably changed in size or cellularity. CONCLUSION: Our experiments reveal an antifibrotic effect of somatostatin in schistosomiasis. We have previously shown that the somatostatin receptors SSTR2 and SSTR3 are present on the parasite egg and worms. We therefore hypothesize that somatostatin reduces either the number of parasite eggs or the secretion of fibrosis inducing-mediators. Our data suggest somatostatin may have therapeutic potential in S. mansoni mediated liver pathology

    Reporter gene-expressing bone marrow-derived stromal cells are immune-tolerated following implantation in the central nervous system of syngeneic immunocompetent mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell transplantation is likely to become an important therapeutic tool for the treatment of various traumatic and ischemic injuries to the central nervous system (CNS). However, in many pre-clinical cell therapy studies, reporter gene-assisted imaging of cellular implants in the CNS and potential reporter gene and/or cell-based immunogenicity, still remain challenging research topics.</p> <p>Results</p> <p>In this study, we performed cell implantation experiments in the CNS of immunocompetent mice using autologous (syngeneic) luciferase-expressing bone marrow-derived stromal cells (BMSC-Luc) cultured from ROSA26-L-S-L-Luciferase transgenic mice, and BMSC-Luc genetically modified using a lentivirus encoding the enhanced green fluorescence protein (eGFP) and the puromycin resistance gene (Pac) (BMSC-Luc/eGFP/Pac). Both reporter gene-modified BMSC populations displayed high engraftment capacity in the CNS of immunocompetent mice, despite potential immunogenicity of introduced reporter proteins, as demonstrated by real-time bioluminescence imaging (BLI) and histological analysis at different time-points post-implantation. In contrast, both BMSC-Luc and BMSC-Luc/eGFP/Pac did not survive upon intramuscular cell implantation, as demonstrated by real-time BLI at different time-points post-implantation. In addition, ELISPOT analysis demonstrated the induction of IFN-γ-producing CD8+ T-cells upon intramuscular cell implantation, but not upon intracerebral cell implantation, indicating that BMSC-Luc and BMSC-Luc/eGFP/Pac are immune-tolerated in the CNS. However, in our experimental transplantation model, results also indicated that reporter gene-specific immune-reactive T-cell responses were not the main contributors to the immunological rejection of BMSC-Luc or BMSC-Luc/eGFP/Pac upon intramuscular cell implantation.</p> <p>Conclusion</p> <p>We here demonstrate that reporter gene-modified BMSC derived from ROSA26-L-S-L-Luciferase transgenic mice are immune-tolerated upon implantation in the CNS of syngeneic immunocompetent mice, providing a research model for studying survival and localisation of autologous BMSC implants in the CNS by real-time BLI and/or histological analysis in the absence of immunosuppressive therapy.</p

    View Point- The human prion disease hypothesis does not justify the origin of bovine spongiform encephalopathy

    No full text
    corecore