106 research outputs found
Interferon stimulated exonuclease gene 20 kDa links psychiatric events to distinct hepatitis C virus responses in human immunodeficiency virus positive patients: ISG20 Links Psychiatric Events to HCV Clearance
Hepatitis C Virus (HCV) infection occurs frequently in patients with preexisting mental illness. Treatment for chronic hepatitis C using interferon formulations often increases risk for neuropsychiatric symptoms. Pegylated-Interferon-α (PegIFN-α) remains crucial for attaining sustained virologic response (SVR); however, PegIFN-α based treatment is associated with psychiatric adverse effects, which require dose reduction and/or interruption. This study's main objective was to identify genes induced by PegIFN-α and expressed in the central nervous system and immune system, which could mediate the development of psychiatric toxicity in association with antiviral outcome. Using peripheral blood mononuclear cells from Human Immunodeficiency Virus (HIV)/HCV co-infected donors (N=28), DNA microarray analysis was performed and 21 differentially regulated genes were identified in patients with psychiatric toxicity vs. those without. Using these 21 expression profiles a two-way-ANOVA was performed to select genes based on antiviral outcome and occurrence of neuropsychiatric adverse events. Microarray analysis demonstrated that Interferon-stimulated-exonuclease-gene 20kDa (ISG20) and Interferon-alpha-inducible-protein 27 (IFI27) were the most regulated genes (P<0.05) between three groups that were built by combining antiviral outcome and neuropsychiatric toxicity. Validation by bDNA assay confirmed that ISG20 expression levels were significantly associated with these outcomes (P<0.035). Baseline levels and induction of ISG20 correlated independently with no occurrence of psychiatric adverse events and non-response to therapy (P<0.001). Among the 21 genes that were associated with psychiatric adverse events and 20 Interferon-inducible genes (IFIGs) used as controls, only ISG20 expression was able to link PegIFN-α related neuropsychiatric toxicity to distinct HCV-responses in patients co-infected with HIV and HCV in vivo
Predictors of nonadherence among patients with infectious complications of substance use who are discharged on parenteral antimicrobial therapy
BACKGROUND: The management of invasive infections related to substance use disorder (SUD) needing parenteral antimicrobial therapy is challenging and may have poor treatment outcomes including nonadherence and lack of completion of parenteral antimicrobial therapy.
METHODS: In this retrospective cohort of 201 patients with invasive infections related to SUD, we looked at frequency and determinants of unfavorable outcomes including nonadherence.
RESULTS: Seventy-nine percent of patients with SUD-related infection completed parenteral antibiotic therapy in skilled nursing facilities. A total of 21.5% of patient episodes had documentation of nonadherence. Nonadherence was higher in patients with active injection drug use (IDU) (28.5% versus 15% in non IDU; adjusted odds ratio [OR] 2.36; 95% confidence interval [CI], 1.1-5.5;
CONCLUSIONS: Nonadherence to parenteral antimicrobial therapy is high in the most vulnerable patients with unstable high-risk SUD and adverse social determinants of health
CD38: an ecto-enzyme with functional diversity in T cells
CD38, a nicotinamide adenine dinucleotide (NAD)+ glycohydrolase, is considered an activation marker of T lymphocytes in humans that is highly expressed during certain chronic viral infections. T cells constitute a heterogeneous population; however, the expression and function of CD38 has been poorly defined in distinct T cell compartments. We investigated the expression and function of CD38 in naïve and effector T cell subsets in the peripheral blood mononuclear cells (PBMCs) from healthy donors and people with HIV (PWH) using flow cytometry. Further, we examined the impact of CD38 expression on intracellular NAD+ levels, mitochondrial function, and intracellular cytokine production in response to virus-specific peptide stimulation (HIV Group specific antigen; Gag). Naïve T cells from healthy donors showed remarkably higher levels of CD38 expression than those of effector cells with concomitant reduced intracellular NAD+ levels, decreased mitochondrial membrane potential and lower metabolic activity. Blockade of CD38 by a small molecule inhibitor, 78c, increased metabolic function, mitochondrial mass and mitochondrial membrane potential in the naïve T lymphocytes. PWH exhibited similar frequencies of CD38+ cells in the T cell subsets. However, CD38 expression increased on Gag-specific IFN-γ and TNF-α producing cell compartments among effector T cells. 78c treatment resulted in reduced cytokine production, indicating its distinct expression and functional profile in different T cell subsets. In summary, in naïve cells high CD38 expression reflects lower metabolic activity, while in effector cells it preferentially contributes to immunopathogenesis by increasing inflammatory cytokine production. Thus, CD38 may be considered as a therapeutic target in chronic viral infections to reduce ongoing immune activation
Impaired HCV clearance in HIV/HCV coinfected subjects treated with PegIFN and RBV due to interference of IFN signaling by IFNαR2a
Enhanced endogenous interferon (IFN) stimulated gene (ISG) signature has been associated with nonresponsiveness to hepatitis C treatment using pegylated-IFNα (pegIFNα) and ribavirin (RBV) in human immunodeficiency virus/hepatitis C virus (HIV/HCV) coinfected patients. Using a proteomic approach, we identified high levels of IFNα receptor 2a (IFNαR2a) in the serum of null responders to pegIFNα/RBV. IFNαR2a inhibited antiviral activity of all formulations of IFNα in JFH/Huh7.5 cells. Furthermore, serum from null responders, but not from those who achieved sustained virologic response, suppressed IFN-signaling and ISG expression in IFNα-stimulated PBMCs of healthy donors in an IFNαR2a specific fashion. An IFNαR2a transgenic mice model (C57BL/6) was generated that had significantly higher levels of IFNαR2a in the serum than the controls (P=0.001). Total ISG expression in the lymph nodes was significantly higher compared to wild-type mice (P value=0.0016). In addition, IFITM1 and SP110 had significantly increased expression in the liver, IFITM1 and ISG15 in the lymph node, and ISG15 and PLSCR1 in the spleen (P value\u3c0.05). The underlying mechanism of resistance to hepatitis C treatment may involve transsignaling of the JAK/STAT pathway by the sIFNαR2a-IFNα/β complex and result in the enhanced ISG signature observed in null responders. In this regard, the transgenic mice model simulated nonresponders to IFNα therapy and provides valuable insights into the role of sIFNαR2a- IFNα interactions in vivo. © Mary Ann Liebert, Inc
Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics
The COVID-19 pandemic triggered an unparalleled pursuit of vaccines to induce specific adaptive immunity, based on virus-neutralizing antibodies and T cell responses. Although several vaccines have been developed just a year after SARS-CoV-2 emerged in late 2019, global deployment will take months or even years. Meanwhile, the virus continues to take a severe toll on human life and exact substantial economic costs. Innate immunity is fundamental to mammalian host defense capacity to combat infections. Innate immune responses, triggered by a family of pattern recognition receptors, induce interferons and other cytokines and activate both myeloid and lymphoid immune cells to provide protection against a wide range of pathogens. Epidemiological and biological evidence suggests that the live-attenuated vaccines (LAV) targeting tuberculosis, measles, and polio induce protective innate immunity by a newly described form of immunological memory termed “trained immunity.” An LAV designed to induce adaptive immunity targeting a particular pathogen may also induce innate immunity that mitigates other infectious diseases, including COVID-19, as well as future pandemic threats. Deployment of existing LAVs early in pandemics could complement the development of specific vaccines, bridging the protection gap until specific vaccines arrive. The broad protection induced by LAVs would not be compromised by potential antigenic drift (immune escape) that can render viruses resistant to specific vaccines. LAVs might offer an essential tool to “bend the pandemic curve,” averting the exhaustion of public health resources and preventing needless deaths and may also have therapeutic benefits if used for postexposure prophylaxis of disease
One vaccine to counter many diseases? Modeling the economics of oral polio vaccine against child mortality and COVID-19
INTRODUCTION: Recent reviews summarize evidence that some vaccines have heterologous or non-specific effects (NSE), potentially offering protection against multiple pathogens. Numerous economic evaluations examine vaccines\u27 pathogen-specific effects, but less than a handful focus on NSE. This paper addresses that gap by reporting economic evaluations of the NSE of oral polio vaccine (OPV) against under-five mortality and COVID-19.
MATERIALS AND METHODS: We studied two settings: (1) reducing child mortality in a high-mortality setting (Guinea-Bissau) and (2) preventing COVID-19 in India. In the former, the intervention involves three annual campaigns in which children receive OPV incremental to routine immunization. In the latter, a susceptible-exposed-infectious-recovered model was developed to estimate the population benefits of two scenarios, in which OPV would be co-administered alongside COVID-19 vaccines. Incremental cost-effectiveness and benefit-cost ratios were modeled for ranges of intervention effectiveness estimates to supplement the headline numbers and account for heterogeneity and uncertainty.
RESULTS: For child mortality, headline cost-effectiveness was 23,000-65,000 if it were administered simultaneously with a COVID-19 vaccine \u3c200 days into a wave of the epidemic. If the COVID-19 vaccine availability were delayed, the cost per averted death would decrease to $2600-6100. Estimated benefit-to-cost ratios vary but are consistently high.
DISCUSSION: Economic evaluation suggests the potential of OPV to efficiently reduce child mortality in high mortality environments. Likewise, within a broad range of assumed effect sizes, OPV (or another vaccine with NSE) could play an economically attractive role against COVID-19 in countries facing COVID-19 vaccine delays.
FUNDING: The contribution by DTJ was supported through grants from Trond Mohn Foundation (BFS2019MT02) and Norad (RAF-18/0009) through the Bergen Center for Ethics and Priority Setting
Gene Expression Profiles Predict Emergence of Psychiatric Adverse Events in HIV/HCV-Coinfected Patients on Interferon-Based HCV Therapy
The efficacy of pegylated IFN-α and ribavirin (pegIFN/RBV) in the treatment of Hepatitis C infection is limited by psychiatric adverse effects (IFN-PE). Our study examined the ability of differential gene expression patterns prior to therapy to predict emergent IFN-PE among 28 HIV/HCV co-infected patients treated with pegIFN-α2b/RBV
Articles Ledipasvir and sofosbuvir for hepatitis C genotype 4: a proof-of-concept, single-centre, open-label phase 2a cohort study
Summary Background Worldwide, although predominantly in low-income countries in the Middle East and Africa, up to 13% of hepatitis C virus (HCV) infections are caused by HCV genotype 4. For patients with HCV genotype 1, the combination of ledipasvir and sofosbuvir has been shown to cure high proportions of patients with excellent tolerability, but this regimen has not been assessed for the treatment of HCV genotype 4. We assessed the effi cacy, safety, and tolerability of 12 weeks of combination therapy with ledipasvir and sofosbuvir for patients with chronic HCV genotype 4 infections
- …