15 research outputs found
Zigzag-shaped nickel nanowires via organometallic template-free route
In this manuscript, the formation of nickel nanowires (average size: several tens to hundreds of μm long
and 1.0-1.5 μm wide) at low temperature is found to be driven by dewetting of liquid organometallic
precursors during spin coating process and by self-assembly of Ni clusters. Elaboration of metallic thin
films by low temperature deposition technique makes the preparation process compatible with most of the
substrates. The use of iron and cobalt precursor shows that the process could be extended to other metallic
systems. In this work, AFM and SEM are used to follow the assembly of Ni clusters into straight or
zigzag lines. The formation of zigzag structure is specific to the Ni precursor at appropriate preparation
parameters. This template free process allows a control of anisotropic structures with homogeneous sizes
and angles on standard Si/SiO2 surface
Composition‐dependent morphology, structure, and catalytical performance of nickel-iron layered double hydroxide as highly‐efficient and stable anode catalyst in anion exchange membrane water electrolysis
Water splitting is an environmentally friendly strategy to produce hydrogen but is limited by the oxygen evolution reaction (OER). Therefore, there is an urgent need to develop highly efficient electrocatalysts. Here, NiFe layered double hydroxides (NiFe LDH) with tunable Ni/Fe composition exhibit corresponding dependent morphology, layered structure, and chemical states, leading to higher activity and better stability than that of conventional NiFe LDH‐based catalysts. The characterization data show that the low overpotentials (249 mV at 10 mA cm-2), ultrasmall Tafel slopes (24 mV dec-1), and high current densities of Ni3Fe LDH result from the larger fraction of trivalent Fe3+ and the optimized local chemical environment with more oxygen coordination and ordered atomic structure for the metal site. Owing to the active intermediate species, Ni(Fe)OOH, under OER conditions and a reversible dynamic phase transition during the cycling process, the Ni3Fe LDH achieves a high current density of over 2 A cm-2 at 2.0 V, and durability of 400 h at 1 A cm-2 in a single cell test. This work provides insights into the relationship between the composition, electronic structure of the layer, and electrocatalytic performance, and offers a scalable and efficient strategy for developing promising catalysts to support the development of the future hydrogen economy.Hydrogen Europe and Hydrogen Europe ResearchEuropean Union's Horizon 2020 research innovation programmeProjekt DEA
Durability study on a Ni3Fe-LDH Anode designed for high performing and stable AEM Water Electrolyzer
Composition‐Dependent Morphology, Structure, and Catalytical Performance of Nickel–Iron Layered Double Hydroxide as Highly‐Efficient and Stable Anode Catalyst in Anion Exchange Membrane Water Electrolysis
Water splitting is an environmentally friendly strategy to produce hydrogen but is limited by the oxygen evolution reaction (OER). Therefore, there is an urgent need to develop highly efficient electrocatalysts. Here, NiFe layered double hydroxides (NiFe LDH) with tunable Ni/Fe composition exhibit corresponding dependent morphology, layered structure, and chemical states, leading to higher activity and better stability than that of conventional NiFe LDH-based catalysts. The characterization data show that the low overpotentials (249 mV at 10 mA cm–2), ultrasmall Tafel slopes (24 mV dec–1), and high current densities of Ni3Fe LDH result from the larger fraction of trivalent Fe3+ and the optimized local chemical environment with more oxygen coordination and ordered atomic structure for the metal site. Owing to the active intermediate species, Ni(Fe)OOH, under OER conditions and a reversible dynamic phase transition during the cycling process, the Ni3Fe LDH achieves a high current density of over 2 A cm–2 at 2.0 V, and durability of 400 h at 1 A cm–2 in a single cell test. This work provides insights into the relationship between the composition, electronic structure of the layer, and electrocatalytic performance, and offers a scalable and efficient strategy for developing promising catalysts to support the development of the future hydrogen economy
Composition‐Dependent Morphology, Structure, and Catalytical Performance of Nickel–Iron Layered Double Hydroxide as Highly-Efficient and Stable Anode Catalyst in Anion Exchange Membrane Water Electrolysis
Water splitting is an environmentally friendly strategy to produce hydrogen but is limited by the oxygen evolution reaction (OER). Therefore, there is an urgent need to develop highly efficient electrocatalysts. Here, NiFe layered double hydroxides (NiFe LDH) with tunable Ni/Fe composition exhibit corresponding dependent morphology, layered structure, and chemical states, leading to higher activity and better stability than that of conventional NiFe LDH-based catalysts. The characterization data show that the low overpotentials (249 mV at 10 mA cm–2), ultrasmall Tafel slopes (24 mV dec–1), and high current densities of Ni3Fe LDH result from the larger fraction of trivalent Fe3+ and the optimized local chemical environment with more oxygen coordination and ordered atomic structure for the metal site. Owing to the active intermediate species, Ni(Fe)OOH, under OER conditions and a reversible dynamic phase transition during the cycling process, the Ni3Fe LDH achieves a high current density of over 2 A cm–2 at 2.0 V, and durability of 400 h at 1 A cm–2 in a single cell test. This work provides insights into the relationship between the composition, electronic structure of the layer, and electrocatalytic performance, and offers a scalable and efficient strategy for developing promising catalysts to support the development of the future hydrogen economy