60 research outputs found

    Stacking-dependent electronic structure of trilayer graphene resolved by nanospot angle-resolved photoemission spectroscopy

    Full text link
    The crystallographic stacking order in multilayer graphene plays an important role in determining its electronic structure. In trilayer graphene, rhombohedral stacking (ABC) is particularly intriguing, exhibiting a flat band with an electric-field tunable band gap. Such electronic structure is distinct from simple hexagonal stacking (AAA) or typical Bernal stacking (ABA), and is promising for nanoscale electronics, optoelectronics applications. So far clean experimental electronic spectra on the first two stackings are missing because the samples are usually too small in size (um or nm scale) to be resolved by conventional angle-resolved photoemission spectroscopy (ARPES). Here by using ARPES with nanospot beam size (NanoARPES), we provide direct experimental evidence for the coexistence of three different stackings of trilayer graphene and reveal their distinctive electronic structures directly. By fitting the experimental data, we provide important experimental band parameters for describing the electronic structure of trilayer graphene with different stackings

    Evidence for quasi-one-dimensional charge density wave in CuTe by angle-resolved photoemission spectroscopy

    Full text link
    We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature Tc = 335 K by angle-resolved photoemission spectroscopy (ARPES). An anisotropic charge density wave gap with a maximum value of 190 meV is observed in the quasi-one-dimensional band formed by Te px orbitals. The CDW gap can be filled by increasing temperature or electron doping through in situ potassium deposition. Combining the experimental results with calculated electron scattering susceptibility and phonon dispersion, we suggest that both Fermi surface nesting and electron-phonon coupling play important roles in the emergence of the CDW

    Disorder induced multifractal superconductivity in monolayer niobium dichalcogenides

    Full text link
    The interplay between disorder and superconductivity is a subtle and fascinating phenomenon in quantum many body physics. The conventional superconductors are insensitive to dilute nonmagnetic impurities, known as the Anderson's theorem. Destruction of superconductivity and even superconductor-insulator transitions occur in the regime of strong disorder. Hence disorder-enhanced superconductivity is rare and has only been observed in some alloys or granular states. Because of the entanglement of various effects, the mechanism of enhancement is still under debate. Here we report well-controlled disorder effect in the recently discovered monolayer NbSe2_2 superconductor. The superconducting transition temperatures of NbSe2_2 monolayers are substantially increased by disorder. Realistic theoretical modeling shows that the unusual enhancement possibly arises from the multifractality of electron wave functions. This work provides the first experimental evidence of the multifractal superconducting state

    Widely tunable band gap in a multivalley semiconductor SnSe by potassium doping

    Full text link
    SnSe, a group IV-VI monochalcogenide with layered crystal structure similar to black phosphorus, has recently attracted extensive interests due to its excellent thermoelectric properties and potential device applications. Experimental electronic structure of both the valence and conduction bands is critical for understanding the effects of hole versus electron doping on the thermoelectric properties, and to further reveal possible change of the band gap upon doping. Here, we report the multivalley valence bands with a large effective mass on semiconducting SnSe crystals and reveal single-valley conduction bands through electron doping to provide a complete picture of the thermoelectric physics. Moreover, by electron doping through potassium deposition, the band gap of SnSe can be widely tuned from 1.2 eV to 0.4 eV, providing new opportunities for tunable electronic and optoelectronic devices
    • …
    corecore