48 research outputs found

    Too much data, but little inter-changeability: a lesson learned from mining public data on tissue specificity of gene expression

    Get PDF
    BACKGROUND: The tissue expression pattern of a gene often provides an important clue to its potential role in a biological process. A vast amount of gene expression data have been and are being accumulated in public repository through different technology platforms. However, exploitations of these rich data sources remain limited in part due to issues of technology standardization. Our objective is to test the data comparability between SAGE and microarray technologies, through examining the expression pattern of genes under normal physiological states across variety of tissues. RESULTS: There are 42–54% of genes showing significant correlations in tissue expression patterns between SAGE and GeneChip, with 30–40% of genes whose expression patterns are positively correlated and 10–15% of genes whose expression patterns are negatively correlated at a statistically significant level (p = 0.05). Our analysis suggests that the discrepancy on the expression patterns derived from technology platforms is not likely from the heterogeneity of tissues used in these technologies, or other spurious correlations resulting from microarray probe design, abundance of genes, or gene function. The discrepancy can be partially explained by errors in the original assignment of SAGE tags to genes due to the evolution of sequence databases. In addition, sequence analysis has indicated that many SAGE tags and Affymetrix array probe sets are mapped to different splice variants or different sequence regions although they represent the same gene, which also contributes to the observed discrepancies between SAGE and array expression data. CONCLUSION: To our knowledge, this is the first report attempting to mine gene expression patterns across tissues using public data from different technology platforms. Unlike previous similar studies that only demonstrated the discrepancies between the two gene expression platforms, we carried out in-depth analysis to further investigate the cause for such discrepancies. Our study shows that the exploitation of rich public expression resource requires extensive knowledge about the technologies, and experiment. Informatic methodologies for better interoperability among platforms still remain a gap. One of the areas that can be improved practically is the accurate sequence mapping of SAGE tags and array probes to full-length genes. REVIEWERS: This article was reviewed by Dr. I. King Jordan, Dr. Joel Bader, and Dr. Arcady Mushegian

    Comparative analysis and integrative classification of NCI60 cell lines and primary tumors using gene expression profiling data

    Get PDF
    BACKGROUND: NCI60 cell lines are derived from cancers of 9 tissue origins and have been invaluable in vitro models for cancer research and anti-cancer drug screen. Although extensive studies have been carried out to assess the molecular features of NCI60 cell lines related to cancer and their sensitivities to more than 100,000 chemical compounds, it remains unclear if and how well these cell lines represent or model their tumor tissues of origin. Identification and confirmation of correct origins of NCI60 cell lines are critical to their usage as model systems and to translate in vitro studies into clinical potentials. Here we report a direct comparison between NCI60 cell lines and primary tumors by analyzing global gene expression profiles. RESULTS: Comparative analysis suggested that 51 of 59 cell lines we analyzed represent their presumed tumors of origin. Taking advantage of available clinical information of primary tumor samples used to generate gene expression profiling data, we further classified those cell lines with the correct origins into different subtypes of cancer or different stages in cancer development. For example, 6 of 7 non-small cell lung cancer cell lines were classified as lung adenocarcinomas and all of them were classified into late stages in tumor progression. CONCLUSION: Taken together, we developed and applied a novel approach for systematic comparative analysis and integrative classification of NCI60 cell lines and primary tumors. Our results could provide guidance to the selection of appropriate cell lines for cancer research and pharmaceutical compound screenings. Moreover, this gene expression profile based approach can be generally applied to evaluate experimental model systems such as cell lines and animal models for human diseases

    Retrospective analysis of protein kinase C-beta (PKC-β) expression in lymphoid malignancies and its association with survival in diffuse large B-cell lymphomas

    Get PDF
    BACKGROUND: Both mechanistic features and recent correlative findings suggest a potential role for protein kinase C-beta (PKC-β) in tumor pathogenesis, particularly in B-cell malignancies. To evaluate the role of this gene in lymphoid malignancies, we analyzed global gene expression data to quantify PKC-β expression across diagnostic groups and, when possible, determined correlations between PKC-β expression and survival. RESULTS: Our analysis showed that the level of PKC-β expression was highest in chronic lymphocytic leukemia and follicular lymphoma. Within diffuse large-B cell lymphoma (DLBCL), PKC-β expression was significantly higher in activated B-cell- like subtype than germinal center B-cell- like subtype (P < 0.0001). Elevated PKC-β appeared to be associated with worse survival in both of these subtypes. When analyzed within clinically defined risk groups established by the International Prognostic Index (IPI), PKC-β expression was lowest in patients with low IPI scores (0–1). Within intermediate- and high-risk IPI groups, elevated PKC-β expression was associated with worse survival, suggesting that PKC-β may expand the prognostic value of the IPI. Results of global gene expression analyses of DLBCL samples corroborate previous observations that anti-apoptosis, cell proliferation, and B-cell proliferation signaling pathways are functionally related to PKC-β. CONCLUSION: We present a first detailed pharmacogenomics report comparing PKC-β mRNA expression across different lymphoid malignancies and evaluating it as an outcome predictor. Our findings suggest that DLBCL patients with elevated PKC-β have a worse prognosis, indicating that further evaluation of PKC-β as a chemotherapeutic target for lymphoid malignancies is warranted. REVIEWERS: This article was reviewed by Dr. Pierre Pontarotti, Dr. Kateryna Makova, and Dr. Matthew Coleman (nominated by Dr. Sandrine Dudoit)

    Puerarin Alleviates Neuropathic Pain by Inhibiting Neuroinflammation in Spinal Cord

    Full text link
    Neuropathic pain responds poorly to drug treatments, and partial relief is achieved in only about half of the patients. Puerarin, the main constituent of Puerariae Lobatae Radix, has been used extensively in China to treat hypertension and tumor. The current study examined the effects of puerarin on neuropathic pain using two most commonly used animal models: chronic constriction injury (CCI) and diabetic neuropathy. We found that consecutive intrathecal administration of puerarin (4–100 nM) for 7 days inhibited the mechanical and thermal nociceptive response induced by CCI and diabetes without interfering with the normal pain response. Meanwhile, in both models puerarin inhibited the activation of microglia and astroglia in the spinal dorsal horn. Puerarin also reduced the upregulated levels of nuclear factor-κB (NF-κB) and other proinflammatory cytokines, such as IL-6, IL-1β, and TNF-α, in the spinal cord. In summary, puerarin alleviated CCI- and diabetes-induced neuropathic pain, and its effectiveness might be due to the inhibition of neuroinflammation in the spinal cord. The anti-inflammation effect of puerarin might be related to the suppression of spinal NF-κB activation and/or cytokines upregulation. We conclude that puerarin has a significant effect on alleviating neuropathic pain and thus may serve as a therapeutic approach for neuropathic pain

    A juvenile mouse model of anti-N-methyl-D-aspartate receptor encephalitis by active immunization

    Get PDF
    IntroductionAnti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a common autoimmune encephalitis, and it is associated with psychosis, dyskinesia, and seizures. Anti-NMDAR encephalitis (NMDARE) in juveniles and adults presents different clinical charactreistics. However, the pathogenesis of juvenile anti-NMDAR encephalitis remains unclear, partly because of a lack of suitable animal models.MethodsWe developed a model of juvenile anti-NMDAR encephalitis using active immunization with an amino terminal domain peptide from the GluN1 subunit (GluN1356 − 385) against NMDARs in 3-week-old female C57BL/6J mice.ResultsImmunofluorescence staining suggested that autoantibody levels in the hippocampus increased, and HEK-293T cells staining identified the target of the autoantibodies as GluN1, suggesting that GluN1-specific immunoglobulin G was successfully induced. Behavior assessment showed that the mice suffered significant cognition impairment and sociability reduction, which is similar to what is observed in patients affected by anti-NMDAR encephalitis. The mice also exhibited impaired long-term potentiation in hippocampal CA1. Pilocarpine-induced epilepsy was more severe and had a longer duration, while no spontaneous seizures were observed.ConclusionThe juvenile mouse model for anti-NMDAR encephalitis is of great importance to investigate the pathological mechanism and therapeutic strategies for the disease, and could accelerate the study of autoimmune encephalitis

    Continued Treatment With Tirzepatide for Maintenance of Weight Reduction in Adults With Obesity: The SURMOUNT-4 Randomized Clinical Trial.

    Get PDF
    IMPORTANCE: The effect of continued treatment with tirzepatide on maintaining initial weight reduction is unknown. OBJECTIVE: To assess the effect of tirzepatide, with diet and physical activity, on the maintenance of weight reduction. DESIGN, SETTING, AND PARTICIPANTS: This phase 3, randomized withdrawal clinical trial conducted at 70 sites in 4 countries with a 36-week, open-label tirzepatide lead-in period followed by a 52-week, double-blind, placebo-controlled period included adults with a body mass index greater than or equal to 30 or greater than or equal to 27 and a weight-related complication, excluding diabetes. INTERVENTIONS: Participants (n = 783) enrolled in an open-label lead-in period received once-weekly subcutaneous maximum tolerated dose (10 or 15 mg) of tirzepatide for 36 weeks. At week 36, a total of 670 participants were randomized (1:1) to continue receiving tirzepatide (n = 335) or switch to placebo (n = 335) for 52 weeks. MAIN OUTCOMES AND MEASURES: The primary end point was the mean percent change in weight from week 36 (randomization) to week 88. Key secondary end points included the proportion of participants at week 88 who maintained at least 80% of the weight loss during the lead-in period. RESULTS: Participants (n = 670; mean age, 48 years; 473 [71%] women; mean weight, 107.3 kg) who completed the 36-week lead-in period experienced a mean weight reduction of 20.9%. The mean percent weight change from week 36 to week 88 was -5.5% with tirzepatide vs 14.0% with placebo (difference, -19.4% [95% CI, -21.2% to -17.7%]; P \u3c .001). Overall, 300 participants (89.5%) receiving tirzepatide at 88 weeks maintained at least 80% of the weight loss during the lead-in period compared with 16.6% receiving placebo (P \u3c .001). The overall mean weight reduction from week 0 to 88 was 25.3% for tirzepatide and 9.9% for placebo. The most common adverse events were mostly mild to moderate gastrointestinal events, which occurred more commonly with tirzepatide vs placebo. CONCLUSIONS AND RELEVANCE: In participants with obesity or overweight, withdrawing tirzepatide led to substantial regain of lost weight, whereas continued treatment maintained and augmented initial weight reduction

    Enhanced electrical and thermal conductivities of 3D-SiC(rGO, G x ) PDCs based on polycarbosilane-vinyltriethoxysilane-graphene oxide (PCS-VTES-GO) precursor containing graphene fillers

    Get PDF
    Abstract(#br)Lightweight 3D-SiC(rGO, G x ) PDCs were fabricated from polycarbosilane-vinyltriethoxysilane-graphene oxide (PCS-VTES-GO) precursor added by different amounts of graphene fillers via direct cold molding and pyrolysis at 1400 °C in an easy manner. Results reveal that SiC(rGO, G x ) PDCs consist of β-SiC nanocrystals homogeneously embedded within amorphous SiO x C y /C free , and graphene is well compatible with SiO x C y /C free for void-free bonded interface, efficiently delaying decomposition of SiO x C y phase into β-SiC. The nanocomposite structure provides an ingenious strategy for constructing complexes with good integrity, high ceramic yield, excellent thermal stability, high electrical and thermal conductivities. This improvement is primarily attributed to the presence of graphene with considerably increasing electric-charge carriers and wider phonon-channel. Such 3D-SiC(rGO, G 20% ) PDCs possess satisfying hardness (12.02 GPa), high electrical conductivity (23.82 S cm −1 ) and thermal conductivity (7.47 W m −1 K −1 ), which make them attractive candidates for microelectromechanical systems (MEMS) devices, energy storage/conversion systems and high precision components, etc

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore