6 research outputs found

    Probing the Reactivity of ZnO with Perovskite Precursors

    No full text
    To achieve more stable and efficient metal halide perovskite devices, optimization of charge transport materials and their interfaces with perovskites is crucial. ZnO on paper would make an ideal electron transport layer in perovskite devices. This metal oxide has a large bandgap, making it transparent to visible light; it can be easily n-type doped, has a decent electron mobility, and is thought to be chemically relatively inert. However, in combination with perovskites, ZnO has turned out to be a source of instability, rapidly degrading the performance of devices. In this work, we provide a comprehensive experimental and computational study of the interaction between the most common organic perovskite precursors and the surface of ZnO, with the aim of understanding the observed instability. Using X-ray photoelectron spectroscopy, we find a complete degradation of the precursors in contact with ZnO and the formation of volatile species as well as new surface bonds. Our computational work reveals that different pristine and defected surface terminations of ZnO facilitate the decomposition of the perovskite precursor molecules, mainly through deprotonation, making the deposition of the latter on those surfaces impossible without the use of passivation

    Defects in Halide Perovskites: Does It Help to Switch from 3D to 2D?

    No full text
    Two-dimensional (2D) organic–inorganic hybrid iodide perovskites have been put forward in recent years as stable alternatives to their three-dimensional (3D) counterparts. Using first-principles calculations, we demonstrate that equilibrium concentrations of point defects in the 2D perovskites PEA2PbI4, BA2PbI4, and PEA2SnI4 (PEA, phenethylammonium; BA, butylammonium) are much lower than in comparable 3D perovskites. Bonding disruptions by defects are more destructive in 2D than in 3D networks, making defect formation energetically more costly. The stability of 2D Sn iodide perovskites can be further enhanced by alloying with Pb. Should, however, point defects emerge in sizable concentrations as a result of nonequilibrium growth conditions, for instance, then those defects likely hamper the optoelectronic performance of the 2D perovskites, as they introduce deep traps. We suggest that trap levels are responsible for the broad sub-bandgap emission in 2D perovskites observed in experiments

    Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations

    No full text
    All-inorganic halide perovskites have received a great deal of attention as attractive alternatives to overcome the stability issues of hybrid halide perovskites that are commonly associated with organic cations. To find a compromise between the optoelectronic properties of CsPbI3 and CsPbBr3, perovskites with CsPb(BrxI1–x)3 mixed compositions are commonly used. An additional benefit is that without sacrificing the optoelectronic properties for applications such as solar cells or light-emitting diodes, small amounts of Br in CsPbI3 can prevent the inorganic perovskite from degrading to a photo-inactive non-perovskite yellow phase. Despite indications that strain in the perovskite lattice plays a role in the stabilization of the material, a full understanding of such strain is lacking. Here, we develop a reactive force field (ReaxFF) for perovskites starting from our previous work for CsPbI3, and we extend this force field to CsPbBr3 and mixed CsPb(BrxI1–x)3 compounds. This force field is used in large-scale molecular dynamics simulations to study perovskite phase transitions and the internal ion dynamics associated with the phase transitions. We find that an increase of the Br content lowers the temperature at which the perovskite reaches a cubic structure. Specifically, by substituting Br for I, the smaller ionic radius of Br induces a strain in the lattice that changes the internal dynamics of the octahedra. Importantly, this effect propagates through the perovskite lattice ranging up to distances of 2 nm, explaining why small concentrations of Br in CsPb(BrxI1–x)3 (x ≤ 1/4) have a significant impact on the phase stability of mixed halide perovskites

    Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations

    No full text
    All-inorganic halide perovskites have received a great deal of attention as attractive alternatives to overcome the stability issues of hybrid halide perovskites that are commonly associated with organic cations. To find a compromise between the optoelectronic properties of CsPbI3 and CsPbBr3, perovskites with CsPb(BrxI1–x)3 mixed compositions are commonly used. An additional benefit is that without sacrificing the optoelectronic properties for applications such as solar cells or light-emitting diodes, small amounts of Br in CsPbI3 can prevent the inorganic perovskite from degrading to a photo-inactive non-perovskite yellow phase. Despite indications that strain in the perovskite lattice plays a role in the stabilization of the material, a full understanding of such strain is lacking. Here, we develop a reactive force field (ReaxFF) for perovskites starting from our previous work for CsPbI3, and we extend this force field to CsPbBr3 and mixed CsPb(BrxI1–x)3 compounds. This force field is used in large-scale molecular dynamics simulations to study perovskite phase transitions and the internal ion dynamics associated with the phase transitions. We find that an increase of the Br content lowers the temperature at which the perovskite reaches a cubic structure. Specifically, by substituting Br for I, the smaller ionic radius of Br induces a strain in the lattice that changes the internal dynamics of the octahedra. Importantly, this effect propagates through the perovskite lattice ranging up to distances of 2 nm, explaining why small concentrations of Br in CsPb(BrxI1–x)3 (x ≤ 1/4) have a significant impact on the phase stability of mixed halide perovskites

    Mixing I and Br in Inorganic Perovskites: Atomistic Insights from Reactive Molecular Dynamics Simulations

    No full text
    All-inorganic halide perovskites have received a great deal of attention as attractive alternatives to overcome the stability issues of hybrid halide perovskites that are commonly associated with organic cations. To find a compromise between the optoelectronic properties of CsPbI3 and CsPbBr3, perovskites with CsPb(BrxI1–x)3 mixed compositions are commonly used. An additional benefit is that without sacrificing the optoelectronic properties for applications such as solar cells or light-emitting diodes, small amounts of Br in CsPbI3 can prevent the inorganic perovskite from degrading to a photo-inactive non-perovskite yellow phase. Despite indications that strain in the perovskite lattice plays a role in the stabilization of the material, a full understanding of such strain is lacking. Here, we develop a reactive force field (ReaxFF) for perovskites starting from our previous work for CsPbI3, and we extend this force field to CsPbBr3 and mixed CsPb(BrxI1–x)3 compounds. This force field is used in large-scale molecular dynamics simulations to study perovskite phase transitions and the internal ion dynamics associated with the phase transitions. We find that an increase of the Br content lowers the temperature at which the perovskite reaches a cubic structure. Specifically, by substituting Br for I, the smaller ionic radius of Br induces a strain in the lattice that changes the internal dynamics of the octahedra. Importantly, this effect propagates through the perovskite lattice ranging up to distances of 2 nm, explaining why small concentrations of Br in CsPb(BrxI1–x)3 (x ≤ 1/4) have a significant impact on the phase stability of mixed halide perovskites

    What Happens at Surfaces and Grain Boundaries of Halide Perovskites: Insights from Reactive Molecular Dynamics Simulations of CsPbI<sub>3</sub>

    Get PDF
    The commercialization of perovskite solar cells is hindered by the poor long-term stability of the metal halide perovskite (MHP) light-absorbing layer. Solution processing, the common fabrication method for MHPs, produces polycrystalline films with a wide variety of defects, such as point defects, surfaces, and grain boundaries. Although the optoelectronic effects of such defects have been widely studied, the evaluation of their impact on the long-term stability remains challenging. In particular, an understanding of the dynamics of degradation reactions at the atomistic scale is lacking. In this work, using reactive force field (ReaxFF) molecular dynamics simulations, we investigate the effects of defects, in the forms of surfaces, surface defects, and grain boundaries, on the stability of the inorganic halide perovskite CsPbI3. Our simulations establish a stability trend for a variety of surfaces, which correlates well with the occurrence of these surfaces in experiments. We find that a perovskite surface degrades by progressively changing the local geometry of PbIx octahedra from corner- to edge- to face-sharing. Importantly, we find that Pb dangling bonds and the lack of steric hindrance of I species are two crucial factors that induce degradation reactions. Finally, we show that the stability of these surfaces can be modulated by adjusting their atomistic details, by either creating additional point defects or merging them to form grain boundaries. While in general additional defects, particularly when clustered, have a negative impact on the material stability, some grain boundaries have a stabilizing effect, primarily because of the additional steric hindrance
    corecore