608 research outputs found

    Study on the genus Rhopobota Lederer from China (Lepidoptera: Tortricidae: Olethreutinae)

    Get PDF
    This paper deals with seventeen species of the genus Rhopobota from China. Five species (R. furcata sp. n., R. orbiculata sp. n., R. fanjingensis sp. n., R. floccosa sp. n. and R. bucera sp. n.) are described as new to science and four species [R. blanditana (Kuznetsov), R. falcata Nasu, R. okui Nasu and R. symbolias (Meyrick)] are new for China. The male of Rhopobota eclipticodes (Meyrick) is described for the first time. Photographs of the adults and genitalia of the species mentioned are provided. A key to the known Chinese species is given based on adults and male genitalia

    Thrombospondin1 Deficiency Reduces Obesity-Associated Inflammation and Improves Insulin Sensitivity in a Diet-Induced Obese Mouse Model

    Get PDF
    BACKGROUND: Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1) is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice. METHODOLOGY/PRINCIPAL FINDINGS: Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF) or a high-fat (HF) diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype. CONCLUSION: TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a potential therapeutic target to improve the inflammatory and metabolic complications of obesity

    JFET integration using a foundry SOI photonics platform

    Get PDF
    We explore the monolithic integration of conventional electronics with SOI photonics using the commercial silicon photonics foundry technology offered by A*STAR's Institute of Microelectronics (IME). This process offers optical waveguide modulators and photodetectors, but was not intended to support transistors. We present the implementation of junction field effect transistors (JFETs) integrated with optical waveguides and photodetectors. A simple SPICE model is developed for the JFETs based on the available ion implant parameters, and the geometry feature size allowed by the technology's layout rules. We have demonstrated the monolithic integration of photonics and electronics circuits. This work could be useful for application in waveguide sensors and optical telecommunications

    CD47 Differentially Regulates White and Brown Fat Function

    Get PDF
    Mechanisms that enhance energy expenditure are attractive therapeutic targets for obesity. Previously we have demonstrated that mice lacking cd47 are leaner, exhibit increased energy expenditure, and are protected against diet-induced obesity. In this study, we further defined the physiological role of cd47 deficiency in regulating mitochondrial function and energy expenditure in both white and brown adipose tissue. We observed that cd47 deficient mice (under normal chow diet) had comparable amount of white fat mass but reduced white adipocyte size as compared to wild-type mice. Subsequent ex vivo and in vitro studies suggest enhanced lipolysis, and not impaired lipogenesis or energy utilization, contributes to this phenotype. In contrast to white adipose tissue, there were no obvious morphological differences in brown adipose tissue between wild-type and knockout mice. However, mitochondria isolated from brown fat of cd47 deficient mice had significantly higher rates of free fatty acid-mediated uncoupling. This suggests that enhanced fuel availability via white adipose tissue lipolysis may perpetuate elevated brown adipose tissue energy expenditure and contributes to the lean phenotype observed in cd47 deficient mice

    Genome-wide investigation and expression analysis of OSCA gene family in response to abiotic stress in alfalfa

    Get PDF
    Alfalfa is an excellent leguminous forage crop that is widely cultivated worldwide, but its yield and quality are often affected by drought and soil salinization. Hyperosmolality-gated calcium-permeable channel (OSCA) proteins are hyperosmotic calcium ion (Ca2+) receptors that play an essential role in regulating plant growth, development, and abiotic stress responses. However, no systematic analysis of the OSCA gene family has been conducted in alfalfa. In this study, a total of 14 OSCA genes were identified from the alfalfa genome and classified into three groups based on their sequence composition and phylogenetic relationships. Gene structure, conserved motifs and functional domain prediction showed that all MsOSCA genes had the same functional domain DUF221. Cis-acting element analysis showed that MsOSCA genes had many cis-regulatory elements in response to abiotic or biotic stresses and hormones. Tissue expression pattern analysis demonstrated that the MsOSCA genes had tissue-specific expression; for example, MsOSCA12 was only expressed in roots and leaves but not in stem and petiole tissues. Furthermore, RT–qPCR results indicated that the expression of MsOSCA genes was induced by abiotic stress (drought and salt) and hormones (JA, SA, and ABA). In particular, the expression levels of MsOSCA3, MsOSCA5, MsOSCA12 and MsOSCA13 were significantly increased under drought and salt stress, and MsOSCA7, MsOSCA10, MsOSCA12 and MsOSCA13 genes exhibited significant upregulation under plant hormone treatments, indicating that these genes play a positive role in drought, salt and hormone responses. Subcellular localization results showed that the MsOSCA3 protein was localized on the plasma membrane. This study provides a basis for understanding the biological information and further functional analysis of the MsOSCA gene family and provides candidate genes for stress resistance breeding in alfalfa

    Thrombospondin1 Deficiency Reduces Obesity-Associated Inflammation and Improves Insulin Sensitivity in a Diet-Induced Obese Mouse Model

    Get PDF
    Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1) is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice.Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF) or a high-fat (HF) diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype.TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a potential therapeutic target to improve the inflammatory and metabolic complications of obesity

    Genome-wide DNA methylation and gene expression analyses in monozygotic twins identify potential biomarkers of depression

    Get PDF
    Depression is currently the leading cause of disability around the world. We conducted an epigenome-wide association study (EWAS) in a sample of 58 depression score-discordant monozygotic twin pairs, aiming to detect specific epigenetic variants potentially related to depression and further integrate with gene expression profile data. Association between the methylation level of each CpG site and depression score was tested by applying a linear mixed effect model. Weighted gene co-expression network analysis (WGCNA) was performed for gene expression data. The association of DNA methylation levels of 66 CpG sites with depression score reached the level of P < 1 x 10(-4). These top CpG sites were located at 34 genes, especially PTPRN2, HES5, GATA2, PRDM7, and KCNIP1. Many ontology enrichments were highlighted, including Notch signaling pathway, Huntington disease, p53 pathway by glucose deprivation, hedgehog signaling pathway, DNA binding, and nucleic acid metabolic process. We detected 19 differentially methylated regions (DMRs), some of which were located at GRIK2, DGKA, and NIPA2. While integrating with gene expression data, HELZ2, PTPRN2, GATA2, and ZNF624 were differentially expressed. In WGCNA, one specific module was positively correlated with depression score (r = 0.62, P = 0.002). Some common genes (including BMP2, PRDM7, KCNIP1, and GRIK2) and enrichment terms (including complement and coagulation cascades pathway, DNA binding, neuron fate specification, glial cell differentiation, and thyroid gland development) were both identified in methylation analysis and WGCNA. Our study identifies specific epigenetic variations which are significantly involved in regions, functional genes, biological function, and pathways that mediate depression disorder.Peer reviewe
    • …
    corecore