283 research outputs found

    Defects in Halide Perovskites: Does It Help to Switch from 3D to 2D?

    Full text link
    Ruddlesden-Popper hybrid iodide 2D perovskites are put forward as stable alternatives to their 3D counterparts. Using first-principles calculations, we demonstrate that equilibrium concentrations of point defects in the 2D perovskites PEA2_2PbI4_4, BA2_2PbI4_4, and PEA2_2SnI4_4 (PEA: phenethyl ammonium, BA: butylammonium), are much lower than in comparable 3D perovskites. Bonding disruptions by defects are more detrimental in 2D than in 3D networks, making defect formation energetically more costly. The stability of 2D Sn iodide perovskites can be further enhanced by alloying with Pb. Should, however, point defects emerge in sizable concentrations as a result of nonequilibrium growth conditions, for instance, then those defects hamper the optoelectronic performance of the 2D perovskites, as they introduce deep traps. We suggest that trap levels are responsible for the broad sub-bandgap emission in 2D perovskites observed in experiments

    Light-tunable three-phase coexistence in mixed halide perovskites

    Get PDF
    Mixed iodine-bromine perovskites used in solar cells undergo below a critical temperature an intrinsic demixing into phases with different iodine-bromine compositions. In addition, under illumination they show nucleation of an iodine-rich phase. We predict from thermodynamic considerations that in mixed iodine-bromine perovskites like MAPb(I1−x_{1-x}Brx_x)3_3 the interplay of these effects can lead to coexistence of a bromine-rich, iodine-rich, and nearly iodine-pure nucleated phase. This three-phase coexistence occurs in a region in the composition-temperature phase diagram near the critical point for intrinsic demixing. We investigate the hysteresis in the evolution of this coexistence when temperature or illumination intensity are cycled. Depending on the particular way the coexistence is established, nearly iodine-pure nuclei should form either in the iodine-rich phase only or both in the bromine-rich and iodine-rich phases. Experimental verification of this fundamentally novel type of light-tunable three-phase coexistence should be possible by a combination of absorption and photoluminescence experiments.Comment: 26 pages, 5 figure

    Mitochondria-Related Ferroptosis Drives Cognitive Deficits in Neonatal Mice Following Sevoflurane Administration

    Get PDF
    Multiple sevoflurane exposure may result in cognitive deficits in neonatal animals. This study attempted to investigate the potential mechanism of sevoflurane-induced neurotoxicity in developing hippocampus. Neonatal animals received sevoflurane anesthesia, then the behavioral tests and Golgi-Cox staining were employed to detect the effect of sevoflurane inhalation in adult mice. And the mitochondrial function was evaluated using MitoSOX staining, Fluo calcium indicators, mitochondrial permeability transition pore (mPTP) assay, and JC-1 probe after sevoflurane administration. Meanwhile, mitochondrial lipid hydroperoxide and ferroptosis were measured by MitoPeDPP and Mito-FerroGreen signals following sevoflurane exposure. Moreover, the ferroptosis and behavioral performance were assessed after deferiprone (DFP) treatment. The results showed that sevoflurane administration induced cognitive impairment accompanied by reducing dendritic length, density, and nodes. Additionally, sevoflurane exposure elevated mitochondrial ROS production and cytoplasm calcium levels, triggered the opening of mPTP, and decreased the mitochondrial membrane potential (MMP). However, supplement of elamipretide (SS-31) effectively reversed mitochondrial dysfunction. Mitochondrial lipid hydroperoxide production was increased after sevoflurane administration, whereas Fer-1 treatment reduced lipid hydroperoxide formation. Sevoflurane exposure induced mitochondrial iron overload, whereas Mito-Tempo treatment reduced iron accumulation. Prussian blue staining showed that the hippocampal iron deposition was apparently increased after sevoflurane inhalation. Additionally, the ferroptosis-related protein expression (including ACSL4, COX2, GPX4, and FTH1) was significantly changed, whereas DFP effectively suppressed ferroptosis and enhanced sevoflurane-induced behavioral malfunction. These findings demonstrated that sevoflurane administration elicited mitochondrial dysfunction and iron dyshomeostasis and eventually resulted in cognitive impairments, whereas protecting mitochondrial function and chelating neurotoxic iron effectively reversed these pathological processes

    Sirt1 Deletion Leads to Enhanced Inflammation and Aggravates Endotoxin-Induced Acute Kidney Injury

    Get PDF
    Bacterial endotoxin has been known to induce excessive inflammatory responses and acute kidney injury. In the present study, we used a mouse model of endotoxemia to investigate the role of Sirt1 in inflammatory kidney injury. We examined molecular and cellular responses in inducible Sirt1 knockout (Sirt1-/-) mice and wild type littermates (Sirt1+/+) in lipopolysaccharide (LPS)-induced kidney injury. Our studies demonstrated that Sirt1 deletion caused aggravated kidney injury, which was associated with increased inflammatory responses including elevated pro-inflammatory cytokine production, and increased ICAM-1 and VCAM-1 expression. Inflammatory signaling such as STAT3/ERK phosphorylation and NF-κB activation was markedly elevated in kidney tissues of Sirt1 knockout mice after LPS challenge. The results indicate that Sirt1 is protective against LPS-induced acute kidney injury by suppressing kidney inflammation and down-regulating inflammatory signaling

    On the Mechanism of Solvents Catalyzed Structural Transformation in Metal Halide Perovskites

    Get PDF
    Metal halide perovskites show the capability of performing structural transformation, allowing the formation of functional heterostructures. Unfortunately, the elusive mechanism governing these transformations limits their technological application. Herein, the mechanism of 2D–3D structural transformation is unraveled as catalyzed by solvents. By combining a spatial-temporal cation interdiffusivity simulation with experimental findings, it is validated that, protic solvents foster the dissociation degree of formadinium iodide (FAI) via dynamic hydrogen bond, then the stronger hydrogen bond of phenylethylamine (PEA) cation with selected solvents compared to dissociated FA cation facilitates 2D–3D transformation from (PEA)2PbI4 to FAPbI3. It is discovered that, the energy barrier of PEA out-diffusion and the lateral transition barrier of inorganic slab are diminished. For 2D films the protic solvents catalyze grain centers (GCs) and grain boundaries (GBs) transforme into 3D phases and quasi-2D phases, respectively. While in the solvent-free case, GCs transform into 3D–2D heterostructures along the direction perpendicular to the substrate, and most GBs evolve into 3D phases. Finally, memristor devices fabricated using the transformed films uncover that, GBs composed of 3D phases are more prone to ion migration. This work elucidates the fundamental mechanism of structural transformation in metal halide perovskites, allowing their use to fabricate complex heterostructures.</p

    Differences in Sensory Characteristics and Aroma Compounds between Young and Aged Qingxiangxing Baijiu

    Get PDF
    The characteristic aroma compounds of qingxiangxing baijiu were analyzed and the differences in sensory characteristics and aroma compounds between young and aged baijiu were clarified by sensory evaluation and techniques for qualitative and quantitative analysis of aroma compounds. Totally 69 odor-active compounds with flavor dilution (FD) factor ≥ 2 were confirmed by comparative aroma extract dilution analysis (CAEDA). A total of 40 odor-active compounds in young qingxiangxing baijiu and 43 in aged qingxiangxing baijiu were identified based on odor activity value (OAV). The important aroma compounds of young and aged baijiu were verified by aroma recombination experiments. Finally, heatmap analysis showed that the differential important aroma compounds (P ≤ 0.05) between young and aged qingxiangxing baijiu mainly included γ-butyrolactone, ethyl isovalerate, γ-nonanolactone, ethyl isobutyrate, 3-methylbutanoic acid, 1,1-diethoxyethane, β-phenylethanol, 2-pentyl furan, acetaldehyde, butanoic acid, ethyl hexanoate, benzaldehyde, furfural, vanillin, hexanal, 3-hydroxy-2-butanone, and 2,3-butanedione. In summary, microconstituents were more abundant in aged than young baijiu, and so were most esters, organic acids, aldehydes, and ketones, while the opposite was found for propanol, isobutanol, and 3-methylbutanol. These could be the major reasons for the significant differences in the sensory characteristics of young and aged baijiu

    Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a

    Get PDF
    BACKGROUND: Shigella bacteria cause dysentery, which remains a significant threat to public health. Shigella flexneri is the most common species in both developing and developed countries. Five Shigella genomes have been sequenced, revealing dynamic and diverse features. To investigate the intra-species diversity of S. flexneri genomes further, we have sequenced the complete genome of S. flexneri 5b strain 8401 (abbreviated Sf8401) and compared it with S. flexneri 2a (Sf301). RESULTS: The Sf8401 chromosome is 4.5-Mb in size, a little smaller than that of Sf301, mainly because the former lacks the SHI-1 pathogenicity island (PAI). Compared with Sf301, there are 6 inversions and one translocation in Sf8401, which are probably mediated by insertion sequences (IS). There are clear differences in the known PAIs between these two genomes. The bacteriophage SfV segment remaining in SHI-O of Sf8401 is clearly larger than the remnants of bacteriophage SfII in Sf301. SHI-1 is absent from Sf8401 but a specific related protein is found next to the pheV locus. SHI-2 is involved in one intra-replichore inversion near the origin of replication, which may change the expression of iut/iuc genes. Moreover, genes related to the glycine-betaine biosynthesis pathway are present only in Sf8401 among the known Shigella genomes. CONCLUSION: Our data show that the two S. flexneri genomes are very similar, which suggests a high level of structural and functional conservation between the two serotypes. The differences reflect different selection pressures during evolution. The ancestor of S. flexneri probably acquired SHI-1 and SHI-2 before SHI-O was integrated and the serotypes diverged. SHI-1 was subsequently deleted from the S. flexneri 5b genome by recombination, but stabilized in the S. flexneri 2a genome. These events may have contributed to the differences in pathogenicity and epidemicity between the two serotypes of S. flexneri
    • …
    corecore