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Abstract

Bacterial endotoxin has been known to induce excessive inflammatory responses and acute kidney injury. In the present
study, we used a mouse model of endotoxemia to investigate the role of Sirt1 in inflammatory kidney injury. We examined
molecular and cellular responses in inducible Sirt1 knockout (Sirt12/2) mice and wild type littermates (Sirt1+/+) in
lipopolysaccharide (LPS)-induced kidney injury. Our studies demonstrated that Sirt1 deletion caused aggravated kidney
injury, which was associated with increased inflammatory responses including elevated pro-inflammatory cytokine
production, and increased ICAM-1 and VCAM-1 expression. Inflammatory signaling such as STAT3/ERK phosphorylation and
NF-kB activation was markedly elevated in kidney tissues of Sirt1 knockout mice after LPS challenge. The results indicate
that Sirt1 is protective against LPS-induced acute kidney injury by suppressing kidney inflammation and down-regulating
inflammatory signaling.
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Introduction

Sepsis arises mostly from bacterial infection which causes

multiple organ failure due to excessive systemic inflammation

[1,2]. Kidney functions as a natural filter of blood and serves as the

first line of defense in our body [3,4]. Unfortunately, it also

becomes a direct target of inflammatory injury [5]. Sepsis-induced

acute kidney injury (AKI) is very common in the elderly and

associated with high mortality [6–8]. To date, there has been no

effective treatment for this devastating disease [9,10]. Lipopoly-

saccharide (LPS) challenge is one of the most accepted animal

models to explore the underlying mechanisms and potential

treatment in sepsis-induced kidney injury [11].

Renal function is significantly compromised during sepsis as

indicated by increased blood urea nitrogen (BUN) and urine

Kidney injury molecule-1 (KIM-1) levels [12–14]. Sepsis also

causes renal tubular damage and inflammation as shown by

histological analysis [15]. Kidney inflammation is associated with

increased production of pro-inflammatory mediators [16], and up-

regulation of adhesion molecules such as Intercellular adhesion

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1

(VCAM-1) [17]. Those early inflammatory responses induce

leukocyte infiltration during kidney injury [18], which may lead to

further damage. Increased cytokine production is a hallmark in

many inflammatory diseases including kidney injury [19,20].

Cytokines can induce pro-inflammatory signaling such as

activatation of signal transducer and activator of transcription 3

(STAT3) [21], and modulate inflammatory responses through

ERK/MAPK cascade [22].

Sirt1, a member of the Sirtuin family [23], is a deacetylase that

has been reported to modulate the function of a wide variety of

proteins such as NF-kB and p53, through deacetylation of lysine

residues [24]. There have been increasing studies suggesting that

Sirt1 plays an important role in inflammation, apoptosis, stress

resistance, metabolism, differentiation, and aging [8,25–31]. In the

present study, we investigated the role of Sirt1 in LPS-induced

acute kidney injury by inducible deletion of Sirt1 in mice. Our

studies demonstrate that Sirt1 knockout mice are highly suscep-

tible to LPS-induced inflammatory kidney injury.

Materials and Methods

Reagents
Tamoxifen and lipopolysaccharide (Escherichia coli serotype

0111:B4) were purchased from Sigma-Aldrich (St. Louis, MO,

USA). TNF-a and IL-6 ELISA kits were obtained from Biolegend

(San Diego, CA, USA). Blood urea nitrogen (BUN) assay kit was

obtained from Arbor Assays (Ann Arbor, Michigan, USA). Kidney

injury molecule-1 (KIM-1) assay kit was purchased from R&D

(Minneapolis, MN, USA). Anti-Mouse Ly-6G (Gr-1)-FITC was

purchased from eBioscience (San Diego, CA, USA). Goat anti-

mouse ICAM-1 and VCAM-1 antibodies were purchased from
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Santa Cruz Biotechnology (Dallas, Texas, USA). Phospho-STAT3

(Thr705), Stat3 (124H6), phospho-p44/42MAPK (ERK1/2)

(Thr202/Tyr204), p44/42MAPK (ERK1/2), phosphorylated

IkBa, IkBa, and b-actin antibodies were obtained from Cell

Signal Technology (Boston, MA, USA).

Animal model of acute kidney injury
Mice were housed in cages with free access to food and water in

a temperature controlled room with a 12-hour dark/light cycle.

All experiments and animal care procedures were approved by the

Institutional Animal Care and Use Committee of the University of

Texas Health Science Center at Tyler. The generation of

inducible Sirt1 knockout mice was described previously [32,33].

Six to seven weeks after the birth, mice were given tamoxifen

(100 mg/Kg body weight in corn oil) by intraperitoneal (I.P.)

injection daily for 5 days to induce nuclear translocation of Cre

recombinase as described previously [33]. Fourteen to fifteen

weeks after Sirt1 deletion, age-matched male Sirt12/2 and Sirt1+/

+ littermates were used in the studies. Endotoxemia was induced

by I.P. injection of 5 mg/kg LPS dissolved in phosphate buffered

saline (PBS), control mice were injected with PBS. Experiments

were terminated 6 or 24 h after LPS challenge.

Renal function assay and histology analysis
Blood and urine samples were obtained from mice 24 h after

LPS challenge, serum BUN and urine KIM-1 levels were

examined as markers of renal dysfunction. Paraffin-embedded

sections of mouse kidney tissues were stained with hematoxylin

and eosin for assessment of renal tubular injury. The histological

samples were scored by lab personnel blinded to the samples. The

magnitude of tubular injury including tubular dilatation, flattening

and vacuolization was scored into five levels (0, none; 1, 0–25%; 2,

25 to 50%; 3, 50 to 75%; and 4, .75%) on the basis of the

percentage of affected tubules in a high-power field under light

microscope.

ELISA, Immunofluorescence, and Immunoblotting assays
Serum IL-6 and TNF-a levels were determined by ELISA kits

(Biolegend). Blood samples were collected 6 and 24 h after LPS

challenge. Kidneys samples were obtained 6 h or 24 h after LPS

exposure. Immunofluorescence and immunoblotting assays were

conducted as described previously [34].

Statistical analysis
Data were analyzed by two-way ANOVA followed by

Bonferroni’s multiple comparisons tests and expressed as mean

6 SEM. Statistical significance was assigned to P values less than

0.05.

Results

Sirt1 deletion leads to aggravated renal dysfunction after
LPS challenge

Serum BUN and urine KIM-1 levels were used as markers of

kidney function [14,35]. BUN and KIM-1 levels were increased

after LPS challenge, and significantly higher in Sirt1 knockout

mice than the wild type littermates (Figure 1 A, B), indicating

exacerbated renal dysfunction in Sirt1 knockout mice.

LPS-induced kidney injury was examined in the tubules of the

kidney cortex. The mice without LPS challenge showed normal

and healthy kidney histology. We detected severe structural

damage in the kidneys of Sirt12/2 mice (Figure 2). Tubular

injury including tubular dilatation, flattening and renal tubular cell

vacuolization were markedly increased in Sirt1 2/2 mice when

Figure 1. Aggravated renal dysfunction in Sirt1 knockout mouse after LPS challenge. Sirt12/2 mice and Sirt1+/+ littermates were divided
into four groups (Sirt1+/+/PBS, Sirt12/2/PBS, Sirt1+/+/LPS, Sirt12/2/LPS). Serum BUN (A) and KIM-1(B) Levels were measured 24 h after LPS challenge
n$4 mice/group. * P,0.05 versus LPS/Sirt1+/+ group.
doi:10.1371/journal.pone.0098909.g001

Figure 2. Aggravated renal tubular injury in Sirt1 knockout
mice after LPS challenge. Kidney tissues were harvested 24 h after
LPS challenge (n = 5 mice/group). The collected kidneys were stained
with H&E staining. (A) Histological examination shows increased tubular
injury in kidney cortex of Sirt12/2 mice after LPS challenge, including
tubular dilatation, flattening (*) and vacuolization (arrows). (B)
Quantitative evaluation of morphological tubular damage 24 h after
LPS challenge. *P,0.05 versus Sirt1+/+/LPS group.
doi:10.1371/journal.pone.0098909.g002

Sirt1 Protects against Inflammatory Kidney Injury
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compared with Sirt1+/+ littermates. Tubular injury scores indicate

that kidney injury was significantly aggravated in Sirt1 knockout

mice.

Sirt1 deletion leads to increased production of pro-
inflammatory cytokines after LPS challenge

The effects of Sirt1 deletion on systemic inflammatory responses

were determined by examining serum IL-6 and TNF-a levels. We

observed that LPS-induced IL-6 and TNF-a production were

significantly increased in Sirt12/2 mice when compared with

Sirt1+/+ littermates after LPS exposure (Figure 3), suggesting that

Sirt1 modulates systemic production of pro-inflammatory cyto-

kines.

Sirt1 deletion leads to increased neutrophil infiltration in
the kidney after LPS challenge

To further assess the effects of Sirt1 deletion on LPS-induced

kidney inflammation, neutrophil infiltration into the kidney was

examined using neutrophil-specific Gr-1 antibody. No neutrophil

infiltration was detected in the control group. LPS challenge led to

increased neutrophil infiltration in the kidney, which was much

more severe in Sirt1 knockout mice (Figure 4 A, B).

Sirt1 deletion leads to increased ICAM-1/VCAM-1
expression in the kidney after LPS challenge

Adhesion molecules on vascular endothelial cells are major

determinants of vascular inflammation [36]. We examined the

Figure 3. Sirt1 deletion causes significant increase of pro-inflammatory cytokine production after LPS challenge. Serum IL-6 and TNF-
alpha levels were measured by ELISA 6 h (A, B) or 24 h (C, D) after LPS challenge (n$4 mice/group). *P,0.05 versus Sirt1+/+/LPS group.
doi:10.1371/journal.pone.0098909.g003

Figure 4. Increased neutrophil infiltration in Sirt1 knockout mice after LPS challenge. Twenty four hours after LPS challenge, kidney
tissues from Sirt12/2 mice and sirt1+/+ littermates were collected (n = 5 mice/group). Cryosections were prepared. (A) Gr-1 was used as a specific
marker for neutrophil staining. Neutrophil (arrow) infiltration was detected. (B) The number of neutrophils was counted. *P,0.05 versus Sirt1+/+/LPS
group.
doi:10.1371/journal.pone.0098909.g004

Sirt1 Protects against Inflammatory Kidney Injury
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effects of Sirt1 deletion on LPS-induced VCAM-1 and ICAM-1

expression in kidney tissues. Immunoblotting assays showed that

Sirt1 knockout mice exhibited significantly higher ICAM-1/

VCAM-1 expression after LPS challenge than Sirt1+/+ littermates

(Figure 5 A–D).

Sirt1 deletion leads to enhanced inflammatory signaling
in the kidney after LPS challenge

We then conducted experiments to investigate the mechanisms

of sirt1 regulation of the kidney inflammation. Inflammatory

signaling including Stat3 pathway has been reported to play an

important role in the development of kidney injury [37]. Our

results indicate that STAT3 phosphorylation was increased in

Sirt12/2 mice when compared with Sirt1+/+ littermates

(Figure 6A, C). To confirm Sirt1 regulation of inflammatory

signaling, we also examined ERK phosphorylation in the kidney

after LPS challenge. The results showed that Sirt1 deletion caused

significant increases in ERK1/2 phosphorylation (Figure 6B, D).

Furthermore, Sirt1 deletion led to increased NF-kB activation in

kidney tissues after LPS challenge as demonstrated by higher IkBa
phosphorylation and degradation (Figure 7), suggesting that Sirt1

down-regulation of inflammatory signaling could be one of the

mechanisms contributing to its protection against kidney inflam-

mation.

Figure 5. Sirt1 deletion enhances LPS-induced ICAM-1/VCAM-1 expression in the kidney. ICAM-1 and VCAM-1expression were assayed
24 h after LPS challenge (n$4 mice/group). (A, B) Representative blots showing ICAM-1 and VCAM-1 expression in the kidney. (C, D) Densitometry
analysis. *P,0.05 versus Sirt1+/+/LPS group.
doi:10.1371/journal.pone.0098909.g005

Figure 6. Sirt1 deletion enhances LPS-induced Stat3 and ERK1/2 activation in the kidney. Kidney tissues were harvested 6 h after LPS
challenge (n$7 mice/group). Samples were subjected to immunoblotting assay. STAT3 (A) and ERK1/2 (B) phosphorylation were examined in the
kidney tissues by immunoblotting assay. (C, D) Densitometry analysis. *P,0.05 versus Sirt1+/+/LPS group.
doi:10.1371/journal.pone.0098909.g006

Sirt1 Protects against Inflammatory Kidney Injury
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Discussion

Sepsis remains a devastating disease without cure. While many

studies have been done to explore the treatment for the disease

[38–42], the mechanisms of septic shock and associated multi-

organ failure are yet to be determined [43,44]. Endotoxemia is

responsible for sepsis-induced excessive inflammatory injury

including acute kidney injury in many clinic settings [45]. The

Kidney, as a maintainer of internal environment homeostasis

[3,4], is vulnerable to tissue injury caused by toxins and pro-

inflammatory mediators [6], and studies are needed to identify

protective mechanisms against sepsis-induced kidney injury.

Altered Sirt1 expression and function have been associated with

many pathological changes [46]. We reported previously that Sirt1

plays an important role in regulating lung inflammation and

coagulation responses [33]. Interestingly, Sirt1 expression is

reduced during aging and in some pre-existing inflammatory

diseases such as COPD and alcoholic fatty liver disease [47,48],

and the elderly are also highly susceptible to inflammatory

disorders including sepsis [23,47,48].

The progression of sepsis is likely associated with two phases. A

systemic inflammatory response syndrome (SIRS) phase and a

compensatory anti-inflammatory response syndrome (CARS)

phase. However, not all patients who suffer from SIRS develop

into severe sepsis [49]. Tight control of the balance between the

two phases could be an important means of suppressing excessive

inflammation [50]. Our studies demonstrate that Sirt1 deletion

leads to aggravated inflammatory kidney injury. Given the

reduced Sirt1 expression during aging [51], our results may

provide an insight on why the elderly are more susceptible to

sepsis-associated kidney injury. Therefore, Sirt1 could be consid-

ered as a potential target to treat inflammatory kidney injury in the

aged population.

Pro-inflammatory cytokines such as TNF-a and IL-6 have been

known to play a critical role in sepsis-induced inflammatory injury

[19,43]. Our results showed that Sirt1 deletion led to increased

LPS-induced IL-6 and TNF-a production, suggesting that Sirt1

acts to suppress inflammatory responses during sepsis. The

cytokines is also known to play an important role in kidney injury

[37]. Inflammatory signaling such as STAT-3 activation promotes

kidney inflammatory responses [52]. In our studies, we showed

that Sirt1 deletion led to enhanced pro-inflammatory signaling as

demonstrated by increased STAT and ERK phosphorylation.

Interestingly, Sirt1 expression in the kidney is higher in young

mice and decreased during aging [53]. Even though it will be

intriguing to link uncontrolled inflammatory responses in the

elderly during sepsis to the reduced Sirt1 expression, more studies

are needed to elucidate the role of Sirt1 in aging-related kidney

injury.

Excessive neutrophil infiltration often leads to inflammatory

tissue injury including acute kidney injury [18]. Leukocyte

migration to the injured sites could help to remove dead cells

and promote the repair process [54], however, excessive neutro-

phil accumulation can result in tissue damage [35]. Neutrophil

infiltration across the vasculature is a multistep process which

requires neutrophil/endothelial interactions through adhesion

molecules ICAM-1 and VCAM-1 [36]. Our results demonstrated

that Sirt1 deletion led to increased ICAM-1/VCAM-1 expression

and neutrophil infiltration in the kidney after LPS challenge,

suggesting that Sirt1 modulates some key factors needed for

sustained inflammatory responses. Sirt1, a member of Class III

Histone Deacetylases [55], modulates transcriptional activities of

associated transcriptional factors, cofactors, and histones by

controlling their acetylation [56,57]. NF-kB pathway is a central

signaling node in inflammatory cytokine production and activation

[55]. NF-kB, a master transcription regulator which also controls

ICAM-1/VCAM-1 expression [58], is an endogenous substrate of

Sirt1 [24]. Deacetylation of NF-kB inhibits its activity and has

been linked to the anti-inflammatory function of Sirt1 [59]. Our

data indicate that Sirt1 modulates NF-kB pathway in the kidney

including IkBa phosphorylation and degradation.

Figure 7. Sirt1 deletion enhances LPS-induced NF-kB activation. Kidney tissues were harvested 6 h after LPS challenge (n$7 mice/group).
Kidney samples were then subjected to immunoblotting assay. IkBa phosphorylation and IkBa level were examined. (A) Representative blots of IkBa
phosphorylation and total IkBa. (B, C) Densitometry analysis. *P,0.05 versus Sirt1+/+/LPS group.
doi:10.1371/journal.pone.0098909.g007

Sirt1 Protects against Inflammatory Kidney Injury
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In summary, Sirt1 plays a protective role against inflammatory

kidney injury in endotoxemia. Sirt1 exerts its function likely

through multiple pathways such as suppressing STAT3, ERK1/2,

and NF-kB activation. Our studies indicate that Sirt1 is a potential

therapeutic target to treat sepsis-induced kidney injury.
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