1,890 research outputs found

    The Role of TLR4 in the Paclitaxel Effects on Neuronal Growth In Vitro

    Get PDF
    Paclitaxel (Pac) is an antitumor agent that is widely used for treatment of solid cancers. While being effective as a chemotherapeutic agent, Pac in high doses is neurotoxic, specifically targeting sensory innervations. In view of these toxic effects associated with conventional chemotherapy, decreasing the dose of Pac has been recently suggested as an alternative approach, which might limit neurotoxicity and immunosuppression. However, it remains unclear if low doses of Pac retain its neurotoxic properties or might exhibit unusual effects on neuronal cells. The goal of this study was to analyze the concentration-dependent effect of Pac on isolated and cultured DRG neuronal cells from wild-type and TLR4 knockout mice. Three different morphological parameters were analyzed: the number of neurons which developed neurites, the number of neurites per cell and the total length of neurites per cell. Our data demonstrate that low concentrations of Pac (0.1 nM and 0.5 nM) do not influence the neuronal growth in cultures in both wild type and TLR4 knockout mice. Higher concentrations of Pac (1-100 nM) had a significant effect on DRG neurons from wild type mice, affecting the number of neurons which developed neurites, number of neurites per cell, and the length of neurites. In DRG from TLR4 knockout mice high concentrations of Pac showed a similar effect on the number of neurons which developed neurites and the length of neurites. At the same time, the number of neurites per cell, indicating the process of growth cone initiation, was not affected by high concentrations of Pac. Thus, our data showed that Pac in high concentrations has a significant damaging effect on axonal growth and that this effect is partially mediated through TLR4 pathways. Low doses of Pac are devoid of neuronal toxicity and thus can be safely used in a chemomodulation mode. © 2013 Ustinova et al

    Neuroimmune Regulation of Surgery-Associated Metastases

    Get PDF
    Surgery remains an essential therapeutic approach for most solid malignancies. Although for more than a century accumulating clinical and experimental data have indicated that surgical procedures themselves may promote the appearance and progression of recurrent and metastatic lesions, only in recent years has renewed interest been taken in the mechanism by which metastasizing of cancer occurs following operative procedures. It is well proven now that surgery constitutes a risk factor for the promotion of pre-existing, possibly dormant micrometastases and the acceleration of new metastases through several mechanisms, including the release of neuroendocrine and stress hormones and wound healing pathway-associated immunosuppression, neovascularization, and tissue remodeling. These postoperative consequences synergistically facilitate the establishment of new metastases and the development of pre-existing micrometastases. While only in recent years the role of the peripheral nervous system has been recognized as another contributor to cancer development and metastasis, little is known about the contribution of tumor-associated neuronal and neuroglial elements in the metastatic disease related to surgical trauma and wound healing. Specifically, although numerous clinical and experimental data suggest that biopsy- and surgery-induced wound healing can promote survival and metastatic spread of residual and dormant malignant cells, the involvement of the tumor-associated neuroglial cells in the formation of metastases following tissue injury has not been well understood. Understanding the clinical significance and underlying mechanisms of neuroimmune regulation of surgery-associated metastasis will not only advance the field of neuro–immuno–oncology and contribute to basic science and translational oncology research but will also produce a strong foundation for developing novel mechanism-based therapeutic approaches that may protect patients against the oncologically adverse effects of primary tumor biopsy and excision

    Cytokine-mediated protection of human dendritic cells from prostate cancer-induced apoptosis is regulated by the Bcl-2 family of proteins

    Get PDF
    Prostate cancer is the most common cancer in men in the United States, and second in cancer-induced mortality. It is likely that tumour-induced immunosuppression is one of the reasons for low treatment efficacy in patients with advanced prostate cancer. It has been recently demonstrated that prostate cancer tissue is almost devoid of dendritic cells (DC), the major antigen-presenting cells responsible for the induction of specific antitumour immune responses. In this study, we have tested the hypothesis that prostate cancer induces progressive suppression of the DC system. We found that co-incubation of human DC with three prostate cancer cell lines led to the high levels of premature apoptosis of DC, which were significantly higher than in DC cultures co-incubated with normal prostate cells or blood leucocytes. Stimulation of DC for 24 hours with CD40 ligand (CD154), IL-12 or IL-15 prior to their co-incubation with prostate cancer cells resulted in a significant increase in DC survival in the tumour microenvironment. Furthermore, activation of DC with these cytokines was also accompanied by increased expression of the anti-apoptotic protein Bcl-x L in DC, suggesting a possible mechanism involved in DC protection from apoptotic death. In summary, our data demonstrate that prostate cancer induces active elimination of DC in the tumour microenvironment. Stimulation of DC by CD154, IL-12 or IL-15 leads to an increased expression of the anti-apoptotic protein Bcl-x L and increased resistance of DC to prostate cancer-induced apoptosis. These results suggest a new mechanism of tumour escape from immune recognition and demonstrate the cytokine-based approaches which might significantly increase the efficacy of DC-based therapies for cancer. © 2000 Cancer Research Campaig

    Chemomodulation of human dendritic cell function by antineoplastic agents in low noncytotoxic concentrations

    Get PDF
    The dose-delivery schedule of conventional chemotherapy, which determines its efficacy and toxicity, is based on the maximum tolerated dose. This strategy has lead to cure and disease control in a significant number of patients but is associated with significant short-term and long-term toxicity. Recent data demonstrate that moderately low-dose chemotherapy may be efficiently combined with immunotherapy, particularly with dendritic cell (DC) vaccines, to improve the overall therapeutic efficacy. However, the direct effects of low and ultra-low concentrations on DCs are still unknown. Here we characterized the effects of low noncytotoxic concentrations of different classes of chemotherapeutic agents on human DCs in vitro. DCs treated with antimicrotubule agents vincristine, vinblastine, and paclitaxel or with antimetabolites 5-aza-2-deoxycytidine and methotrexate, showed increased expression of CD83 and CD40 molecules. Expression of CD80 on DCs was also stimulated by vinblastine, paclitaxel, azacytidine, methotrexate, and mitomycin C used in low nontoxic concentrations. Furthermore, 5-aza-2-deoxycytidine, methotrexate, and mitomycin C increased the ability of human DCs to stimulate proliferation of allogeneic T lymphocytes. Thus, our data demonstrate for the first time that in low noncytotoxic concentrations chemotherapeutic agents do not induce apoptosis of DCs, but directly enhance DC maturation and function. This suggests that modulation of human DCs by noncytotoxic concentrations of antineoplastic drugs, i.e. chemomodulation, might represent a novel approach for up-regulation of functional activity of resident DCs in the tumor microenvironment or improving the efficacy of DCs prepared ex vivo for subsequent vaccinations

    Impact of the sensory neurons on melanoma growth in vivo

    Get PDF
    Nerve endings are often identified within solid tumors, but their impact on the tumor growth and progression remains poorly understood. Emerging data suggests that the central nervous system may affect cancer development and spreading via the hypothalamic-pituitary-adrenal axis and autonomous nervous system. However, the role of the afferent sensory neurons in tumor growth is unclear, except some reports on perineural invasion in prostate and pancreatic cancer and cancer-related pain syndrome. Here, we provide the results of primary testing of the concept that the interaction between melanoma cells and sensory neurons may induce the formation of tumor-supporting microenvironment via attraction of immune regulatory cells by the tumor-activated dorsal root ganglion (DRG) neurons. We report that despite DRG cells not directly up-regulating proliferation of melanoma cells in vitro, presence of DRG neurons allows tumors to grow significantly faster in vivo. This effect has been associated with increased production of chemokines by tumor-activated DRG neurons and attraction of myeloid-derived suppressor cells both in vitro and in vivo. These initial proof-of-concept results justify further investigations of the sensory (afferent) nervous system in the context of tumorigenesis and the local protumorigenic immunoenvironment

    Managing for Change: Achieving Systemic Reform Through the Effective Implementation of Networks for School Improvement

    Get PDF
    In August 2018, the Bill & Melinda Gates Foundation (“the foundation”) launched its Networks for School Improvement (NSIs) initiative. To further its own continuous learning as well as the learning of its grantees and the educational field, the foundation engaged the Center for Public Research and Leadership (CPRL) to conduct a formative evaluation of the NSIs initiative during its first two years. The research questions that guided this study were: How are network hubs implementing the Network for School Improvement (NSI) strategy? What are the characteristics of effective networks and network hubs? To answer these questions, CPRL used a qualitative research design to deeply explore the work of nine networks representative of the broader pool of grantees. Selection was designed to ensure diversity with respect to the following characteristics: (a) geographic location, (b) number of schools in the network, (c) number of districts in the network, (d) grade band targeted, and (e) problem of practice. The findings presented in this paper emerge from an analysis of data collected from these networks across two years. In total, CPRL conducted over 160 interviews, observed 22 network convenings, and analyzed nearly 1,000 artifacts and documents

    Contrasting Ecosystem-Effects of Morphologically Similar Copepods

    Get PDF
    Organisms alter the biotic and abiotic conditions of ecosystems. They can modulate the availability of resources to other species (ecosystem engineering) and shape selection pressures on other organisms (niche construction). Very little is known about how the engineering effects of organisms vary among and within species, and, as a result, the ecosystem consequences of species diversification and phenotypic evolution are poorly understood. Here, using a common gardening experiment, we test whether morphologically similar species and populations of Diaptomidae copepods (Leptodiaptomus ashlandi, Hesperodiaptomus franciscanus, Skistodiaptomus oregonensis) have similar or different effects on the structure and function of freshwater ecosystems. We found that copepod species had contrasting effects on algal biomass, ammonium concentrations, and sedimentation rates, and that copepod populations had contrasting effects on prokaryote abundance, sedimentation rates, and gross primary productivity. The average size of ecosystem-effect contrasts between species was similar to those between populations, and was comparable to those between fish species and populations measured in previous common gardening experiments. Our results suggest that subtle morphological variation among and within species can cause multifarious and divergent ecosystem-effects. We conclude that using morphological trait variation to assess the functional similarity of organisms may underestimate the importance of species and population diversity for ecosystem functioning

    Invasive Allele Spread under Preemptive Competition

    Full text link
    We study a discrete spatial model for invasive allele spread in which two alleles compete preemptively, initially only the "residents" (weaker competitors) being present. We find that the spread of the advantageous mutation is well described by homogeneous nucleation; in particular, in large systems the time-dependent global density of the resident allele is well approximated by Avrami's law.Comment: Computer Simulation Studies in Condensed Matter Physics XVIII, edited by D.P. Landau, S.P. Lewis, and H.-B. Schuttler, (Springer, Heidelberg, Berlin, in press
    corecore