36 research outputs found

    Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    Get PDF
    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27−/− mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs) from wildtype and Fsp27−/− mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT) and white adipose tissue (WAT) and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27−/− mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27−/− and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27−/− mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1α were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27−/− mice. Remarkably, Fsp27−/− MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3). Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity

    Screening and fermentation medium optimization of a strain favorable to Rice–fish Coculture

    Get PDF
    Rice–fish coculture (RF) is a small ecosystem in which microorganisms are widely distributed in the fish, water environment, soil, and plants. In order to study the positive effects of microorganisms on common carp and rice in the RF ecosystem, a total of 18 strains with growth-promoting ability were screened from common carp (Cyprinus carpio) gut contents, among which three strains had the ability to produce both DDP-IV inhibitors and IAA. The strain with the strongest combined ability, FYN-22, was identified physiologically, biochemically, and by 16S rRNA, and it was initially identified as Bacillus licheniformis. As the number of metabolites secreted by the strain under natural conditions is not sufficient for production, the FYN-22 fermentation medium formulation was optimized by means of one-factor-at-a-time (OFAT) experiments and response surface methodology (RSM). The results showed that, under the conditions of a soluble starch concentration of 10.961 g/l, yeast concentration of 2.366 g/l, NH4Cl concentration of 1.881 g/l, and FeCl3 concentration of 0.850 g/l, the actual measured number of FYN-22 spores in the fermentation broth was 1.913 × 109 CFU/ml, which was 2.575-fold improvement over the pre-optimization value. The optimized fermentation solution was used for the immersion operation of rice seeds, and, after 14 days of incubation in hydroponic boxes, the FYN-22 strain was found to have a highly significant enhancement of 48.31% (p < 0.01) on the above-ground part of rice, and different degrees of effect on root length, fresh weight, and dry weight (16.73, 17.80, and 21.97%, respectively; p < 0.05). This study may provide new insights into the fermentation process of Bacillus licheniformis FYN-22 and its further utilization in RF systems

    Contribution of Hepatitis B Virus Infection to the Aggressiveness of Primary Liver Cancer: A Clinical Epidemiological Study in Eastern China

    Get PDF
    Background and aims: The contribution of hepatitis B virus (HBV) infection to the aggressiveness of primary liver cancer (PLC) remains controversial. We aimed to characterize this in eastern China.Methods: We enrolled 8,515 PLC patients whose specimens were reserved at the BioBank of the hepatobiliary hospital (Shanghai, China) during 2007–2016. Of those, 3,124 who received primary radical resection were involved in survival analysis. A nomogram was constructed to predict the survivals using preoperative parameters.Results: Hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined hepatocellular cholangiocarcinoma (CHC) accounted for 94.6, 3.7, and 1.7%, respectively. The rates of HBV infection were 87.5, 49.2, and 80.6%, respectively. HBV infection was significantly associated with 10-year earlier onset, more cirrhosis, higher α-fetoprotein, higher carbohydrate antigen 19-9 (CA19-9), more microvascular invasion (MVI), lower neutrophil-to-lymphocyte ratio (NLR), and lower platelet-to-lymphocyte ratio (PLR) in HCC. HBV infection was also associated with 7-year earlier onset, more cirrhosis, higher α-fetoprotein, more MVI, and lower PLR in ICC. In the multivariate Cox analysis, high circulating HBV DNA, α-fetoprotein, CA19-9, NLR, tumor size, number, encapsulation, Barcelona Clinic Liver Cancer (BCLC) stage, and MVI predicted an unfavorable prognosis in HCC; only CA19-9 and BCLC stage, rather than HBV-related parameters, had prognostic values in ICC. A nomogram constructed with preoperative HBV-related parameters including HBV load, ultrasonic cirrhosis, and α-fetoprotein perform better than the current staging systems in predicting postoperative survival in HCC.Conclusion: HBV promotes the aggressiveness of HCC in Chinese population. The contributions of HBV to ICC and other etiological factors to HCC might be indirect via arousing non-resolving inflammation

    Irradiation-induced telomerase activity and gastric cancer risk: a case-control analysis in a Chinese Han population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomerase expression is one of the characteristics of gastric cancer (GC) cells and telomerase activity is frequently up-regulated by a variety of mechanisms during GC development. Therefore, we hypothesized that elevated levels of activated telomerase might enhance GC risk due to increased propagation of cells with DNA damage, such as induced by γ-radiation.</p> <p>Methods</p> <p>To explore this hypothesis, 246 GC cases and 246 matched controls were recruited in our case-control study. TRAP-ELISA was used to assess the levels of telomerase activity at baseline and after γ-radiation and the γ-radiation-induced telomerase activity (defined as after γ-irradiation/baseline) in cultured peripheral blood lymphocytes (PBLs).</p> <p>Results</p> <p>Our data showed that there was no significant difference for the baseline telomerase activity between GC cases and controls (10.17 ± 7.21 <it>vs. </it>11.02 ± 8.03, <it>p </it>= 0.168). However, after γ-radiation treatment, γ-radiation-induced telomerase activity was significantly higher in the cases than in the controls (1.51 ± 0.93 <it>vs</it>. 1.22 ± 0.66, <it>p </it>< 0.001). Using the median value of γ-radiation-induced telomerase activity in the controls as a cutoff point, we observed that high γ-radiation-induced telomerase activity was associated with a significantly increased GC risk (adjusted odds ratio, 2.45; 95% confidence interval, 1.83-3.18). Moreover, a dose response association was noted between γ-radiation-induced telomerase activity and GC risk. Age, but not sex, smoking and drinking status seem to have a modulating effect on the γ-radiation-induced telomerase activities in both cases and controls.</p> <p>Conclusion</p> <p>Overall, our findings for the first time suggest that the increased γ-radiation-induced telomerase activity in PBLs might be associated with elevated GC risk. Further confirmation of this association using a prospective study design is warranted.</p

    Effects of weather and air pollution on outpatient visits for insect-and-mite-caused dermatitis: an empirical and predictive analysis

    No full text
    Abstract Background Dermatitis caused by insects and mites, diagnosed as papular urticaria or scabies, is a common skin disease. However, there is still a lack of studies about the effects of weather and air pollution on outpatient visits for this disease. This study aims to explore the impacts of meteorological and environmental factors on daily visits of dermatitis outpatients. Methods Analyses are conducted on a total of 43,101 outpatient visiting records during the years 2015–2020 from the largest dermatology specialist hospital in Guangzhou, China. Hierarchical cluster models based on Pearson correlation between risk factors are utilized to select regression variables. Linear regression models are fitted to identify the statistically significant associations between the risk factors and daily visits, taking into account the short-term effects of temperatures. Permutation importance is adopted to evaluate the predictive ability of these factors. Results Short-term temperatures have positive associations with daily visits and exhibit strong predictive abilities. In terms of total outpatients, the one-day lagged temperature not only has a significant impact on daily visits, but also has the highest median value of permutation importance. This conclusion is robust across most subgroups except for subgroups of summer and scabies, wherein the three-day lagged temperature has a negative effect. By contrast, air pollution has insignificant associations with daily visits and exhibits weak predictive abilities. Moreover, weekdays, holidays and trends have significant impacts on daily visits, but with weak predictive abilities. Conclusions Our study suggests that short-term temperatures have positive associations with daily visits and exhibit strong predictive abilities. Nevertheless, air pollution has insignificant associations with daily visits and exhibits weak predictive abilities. The results of this study provide a reference for local authorities to formulate intervention measures and establish an environment-based disease early warning system

    Beneficial Effects of Partly Milled Highland Barley on the Prevention of High-Fat Diet-Induced Glycometabolic Disorder and the Modulation of Gut Microbiota in Mice

    No full text
    The nutritional functions of highland barley (HB) are superior to those of regular cereals and have attracted increasing attention in recent years. The objective of this study was to investigate whether partly milled highland barley (PHB) can regulate the serum glucose and lipid disorders of mice fed a high-fat diet (HFD) and to further explore their potential gut microbiota modulatory effect. Our results showed that PHB supplementation significantly reduced fasting blood glucose (FBG) and improved oral glucose tolerance. Histological observations confirmed the ability of PHB to alleviate liver and intestine damage. Furthermore, the results of 16S amplicon sequencing revealed that PHB prevented a HFD-induced gut microbiota dysbiosis, enriching some beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Ileibacterium, and reducing several HFD-dependent taxa (norank_f_Desulfovibrionaceae, Blautia, norank_f_Lachnospiraceae, unclassified_f_Lachnospiraceae, and Colidextribacter). In addition, the increase of Lactobacillus and Bifidobacterium presence has a slightly dose-dependent relationship with the amount of the added PHB. Spearman correlation analysis revealed that Lactobacillus and Bifidobacterium were negatively correlated with the blood glucose level of the oral glucose tolerance test. Overall, our results provide important information about the processing of highland barley to retain its hypoglycemic effect and improve its acceptability and biosafety

    EDR1 Physically Interacts with MKK4/MKK5 and Negatively Regulates a MAP Kinase Cascade to Modulate Plant Innate Immunity

    No full text
    <div><p>Mitogen-activated protein (MAP) kinase signaling cascades play important roles in the regulation of plant defense. The Raf-like MAP kinase kinase kinase (MAPKKK) EDR1 negatively regulates plant defense responses and cell death. However, how EDR1 functions, and whether it affects the regulation of MAPK cascades, are not well understood. Here, we showed that EDR1 negatively regulates the MKK4/MKK5-MPK3/MPK6 kinase cascade in Arabidopsis. We found that <i>edr1</i> mutants have highly activated MPK3/MPK6 kinase activity and higher levels of MPK3/MPK6 proteins than wild type. EDR1 physically interacts with MKK4 and MKK5, and this interaction requires the N-terminal domain of EDR1. EDR1 also negatively affects MKK4/MKK5 protein levels. In addition, the <i>mpk3</i>, <i>mkk4</i> and <i>mkk5</i> mutations suppress <i>edr1</i>-mediated resistance, and over-expression of <i>MKK4</i> or <i>MKK5</i> causes <i>edr1</i>-like resistance and mildew-induced cell death. Taken together, our data indicate that EDR1 physically associates with MKK4/MKK5 and negatively regulates the MAPK cascade to fine-tune plant innate immunity.</p></div
    corecore