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Rice–fish coculture (RF) is a small ecosystem in which microorganisms are 

widely distributed in the fish, water environment, soil, and plants. In order to 

study the positive effects of microorganisms on common carp and rice in the 

RF ecosystem, a total of 18 strains with growth-promoting ability were screened 

from common carp (Cyprinus carpio) gut contents, among which three strains 

had the ability to produce both DDP-IV inhibitors and IAA. The strain with the 

strongest combined ability, FYN-22, was identified physiologically, biochemically, 

and by 16S rRNA, and it was initially identified as Bacillus licheniformis. As the 

number of metabolites secreted by the strain under natural conditions is not 

sufficient for production, the FYN-22 fermentation medium formulation was 

optimized by means of one-factor-at-a-time (OFAT) experiments and response 

surface methodology (RSM). The results showed that, under the conditions of 

a soluble starch concentration of 10.961 g/l, yeast concentration of 2.366 g/l, 

NH4Cl concentration of 1.881 g/l, and FeCl3 concentration of 0.850 g/l, the actual 

measured number of FYN-22 spores in the fermentation broth was 1.913 × 109 CFU/

ml, which was 2.575-fold improvement over the pre-optimization value. The 

optimized fermentation solution was used for the immersion operation of rice 

seeds, and, after 14 days of incubation in hydroponic boxes, the FYN-22 strain 

was found to have a highly significant enhancement of 48.31% (p < 0.01) on the 

above-ground part of rice, and different degrees of effect on root length, fresh 

weight, and dry weight (16.73, 17.80, and 21.97%, respectively; p < 0.05). This study 

may provide new insights into the fermentation process of Bacillus licheniformis 

FYN-22 and its further utilization in RF systems.
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Introduction

Increasing production costs of rice monoculture and concerns about farmers’ food 
security have prompted farmers to adopt integrated Rice–fish coculture (RF) (Arunrat and 
Sereenonchai, 2022). RF is being promoted on a large scale by the Chinese government for its 
ability to save large amounts of water and land resources, promote sustainable aquaculture, 
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boosting rice yields, and reduce the use of chemical fertilizers, while 
also reducing poverty to a certain extent (Prein, 2002; Frei and 
Becker, 2005; Luo, 2018; Yuan et al., 2022). As of 2020, RF has a 
farming area of up to 9,596 km2 and fish production of up to 856,900 
tons, accounting for 41.41% of the total RF farming area and 29.41% 
of the total fish production in China, occupying a very important 
position (FDMARA (Fisheries Department of Ministry of 
Agriculture Rural Affairs), 2021; Arunrat et al., 2022). Some studies 
have proven that proper fish farming in RF ecosystems does not 
reduce the yield of rice, but rather reduces pests and diseases, in 
addition to controlling weeds (Nico et al., 2002; Vromant et al., 
2002), thus reducing the use of herbicides as well as pesticides 
(Barbara et al., 2018) and even improving the yield and quality of the 
plants and animals grown (Jinzhao et  al., 2020). In addition, 
compared to conventional rice cultivation or fish farming, rice in RF 
can take advantage of the nitrogen-containing elements in the 
excretion of farm animals and the fixation of microorganisms to 
reduce the input of exogenous nitrogen and accelerate the recycling 
of nitrogen, thus reducing the use of fertilizers (Jinfei et al., 2016). As 
an important agent of nutrient cycling in RF, microorganisms play 
an important role in nutrient cycling, formation, and maintenance 
of soil fertility and ecological improvement, on one hand (Insam 
et al., 1996); on the other hand, they colonize the intestinal tract of 
fish and, thus, colonize the intrinsic intestinal flora forming a micro-
ecosystem in which the intestinal microorganisms and the host and 
the aquatic environment in which they live are mutually regulated 
and interdependent (Zhang et al., 2014).

The genus Bacillus is one of the more studied genera of plant-
promoting endophytic bacteria. The main common species of 
Bacillus are Bacillus cereus, Bacillus licheniformis, Bacillus 
amyloliquefaciens, and Bacillus subtilis. It has been found that 
Bacillus spp. are easy to isolate and purify, while producing heat-
resistant and resistant bacilli, and the formulation is stable, 
strongly inhibitory, easy to apply, and transportable, making it an 
important disease-promoting microorganism (Yeong et al., 2020). 
Bacillus licheniformis is a parthenogenic Gram-positive bacterium 
that is highly stable and resistant to high temperatures and acidic 
conditions in the form of endospores. Bacillus licheniformis can 
secrete a variety of digestive enzymes, growth factors, and 
antibacterial substances, which can effectively promote the 
degradation of nutrients and assist the body’s energy metabolism, 
while also promoting the colonization of beneficial bacteria by 
competing with harmful bacteria for colonization sites, which can 
play a role in improving intestinal health (Lu et al., 2020). The 
action of Bacillus licheniformis in promoting plant growth includes 
both direct and indirect mechanisms. The direct growth-
promoting effect is mainly through the synthesis of compounds 
required for plant growth, such as indole acetic acid (IAA), ACC 
deaminase, cytokinin (CTK), and gibberellins (GAs), or through 
nitrogen fixation, as well as phosphorus and potassium removal, 
to increase the content of effective elements such as nitrogen, 
phosphorus, and potassium that can be directly absorbed in the 
soil environment (Chunquan et al., 2000; Rana et al., 2011; Rais 
et al., 2017); the indirect promotion effect is by improving the 

structure of the soil microbial community (Wang et al., 2019). As 
a plant growth regulator, IAA can promote plant root growth, 
increase root length and the number of lateral root growth, and 
accelerate the uptake and conversion efficiency of soil nutrients 
during crop growth (Teintze et  al., 1981), as well as stimulate 
plants to secrete ACC deaminase (Kim et al., 2008).

As the level of metabolites secreted by the strain under natural 
conditions is not sufficient for production, the level of metabolites 
in the fermentation broth is indirectly enhanced by raising the 
concentration of Bacillus licheniformis spores in the fermentation 
broth. It is well known that different Bacillus licheniformis strains 
require specific media to achieve maximum conidial production; 
thus, we optimized a fermentation medium formulation suitable 
for Bacillus licheniformis (FYN-22) by means of mathematical 
modeling. One-factor-at-a-time (OFAT) experiments represent a 
classical and effective screening method, which allows for the 
initial screening of fermentation medium formulations and the 
determination of the corresponding concentration range (Jawan 
et al., 2021). Response surface methodology (RSM) is a relatively 
new statistical method that allows the response value of a system 
to be visualized as a function of one or more factors and the test 
results to be represented graphically (Zhilong et al., 2009). RSM 
uses a multiple quadratic regression equation to fit a functional 
relationship between factors and response values, and the 
regression equation can be analyzed to obtain optimal operating 
parameters that can solve multivariate problems. Both OFAT and 
RSM have their limitations, and, by using a combination of the 
two methods, their shortcomings can be  compensated for to 
obtain the desired experimental results (Venkatachalam et al., 
2019; Mulatu et al., 2021; Willig et al., 2022).

Therefore, in this study, FYN-22 (Bacillus licheniformis) was 
screened from the intestine of common carp (Cyprinus carpio) 
cultured in RF, and the culture conditions for FYN-22 were optimized 
using a mathematical model. The effect of the optimized strain was 
verified via a growth promotion test on LJ-31 rice seedlings to 
evaluate the probiotic effect of the strain in the RF system.

Materials and methods

Experimental material

In September 2021, a population of common carp cultured, 
three healthy 1st -year common carp (150 ± 10 g), was randomly 
selected from a paddy field in Dawa District, Panjin City, Liaoning 
Province, and fed only basal feed (mainly consisting of fish meal, 
soybean meal, vegetable meal, soybean oil, and vitamins and 
minerals required for common carp growth) during rearing, in a soil 
environment of white pulpy rice soil (1.03 g/cm3 capacity, 61.5% 
porosity, and the average saturated water content of 0–30 cm volume 
was 55.6%, and pH 6.52). Common carp were anesthetized with 
MS-222 anesthetic (250 mg/l). The surface of the common carp was 
wiped with anhydrous ethanol, and it was then dissected with 
sterilized scissors and forceps on an ultraclean bench. The whole 
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intestine of the common carp was removed, and the contents were 
gently squeezed out into a conical flask containing glass beads and 
50 ml of sterile water, before shaking at 180 rpm for 30 min at room 
temperature. This was followed by gradient dilution with 100 μl of 
10−3, 10−4, and 10−5 gradients applied to LB solid medium plates; 
each gradient was repeated three times and incubated at 28°C for 
48 h. After 48 h of incubation, strains of different shapes were 
selected for isolation. All procedures were approved by the local 
ethics committee and followed by the European Directive 2010/63/
EU for animal experiments.

Determination of IAA activity

Colony isolates from common carp gut contents were 
inoculated into R2A liquid medium containing l-tryptophan and 
incubated for 4 days at 28°C on a constant shaker shaking at 
180 rpm. Then, 500 μl of bacterial suspension was pipetted into a 
2 ml glass vial, and 500 μl of Salkowski’s colorimetric solution was 
added. IAA (500 mg/l) was also added to the Salkowski colorimetric 
solution as a positive control. The 2 ml glass vials were stored at 
room temperature and protected from light for 30 min before 
observing the color change. A red color indicated the ability of the 
strain to produce IAA in the presence of L-typtophan.

Next, 10 mg of IAA was precisely weighed and dissolved in a 
small amount of anhydrous ethanol, before adding distilled water 
to fix the volume to 100 ml, thus configuring a solution of IAA at 
a concentration of 100 μg/ml as a stock solution. The stock 
solution was then diluted and configured into a series of standards 
at concentrations of 0 (blank), 0.5, 1.0, 5.0, 10.0, 15.0, 20.0, and 
25.0 μg/ml as working solutions. Then, 2 ml of the above working 
solutions was added to eight test tubes, before adding two volumes 
of Salkowski’s colorimetric solution. The solution was kept warm 
at 40°C for 30 min, and then the absorbance was measured at 
530 nm. The IAA standard curve was plotted using OD530 as the 
horizontal coordinate and IAA concentration as the vertical 
coordinate. The IAA production capacity of the strains was 
quantified under the same culture conditions as the primary 
screen. The OD value of the suspension at 530 nm was determined 
spectrophotometrically; then, the suspension was centrifuged at 
10,000 rpm for 10 min, and the supernatant was added to an equal 
volume of Salkowski’s colorimetric solution and left for 30 min at 
40°C, protected from light, to develop the color and determine the 
OD value at 530 nm. The concentration of IAA per unit volume of 
fermentation broth was calculated for an OD530 value of 1 (an 
appropriate dilution is required for higher concentrations of 
bacterial broth) (Chhetri et al., 2022).

Determination of DDP-IV-inhibitory 
activity

Colony isolates from the common carp intestinal contents were 
spread on SKM (2% skim milk) medium plates, and each gradient 

was repeated three times and incubated at 28°C for 48 h. Screening 
was carried out using the lactoprotein hydrolysis circle method, and 
isolates that produced clear circles were picked for purification. The 
supernatant was removed by centrifugation at 8000 rpm for 15 min, 
and the slurry was left. The supernatant was washed three times with 
0.1 mol/l sterile phosphate-buffered saline (PBS, pH = 6.8) and 
resuspended in PBS, and the absorbance value was adjusted to 1.0. 
The supernatant was incubated at a suitable temperature for 24 h, 
centrifuged at 4°C for 15 min at 8000 rpm, and filtered through a 
0.22 pm aqueous membrane. The supernatant was filtered through 
a 0.22 pm aqueous membrane filter to obtain cell-free excretory 
supernatants (CFS), which were stored at −80°C.

For strains showing a clear lactoprotein hydrolysis circle, 25 μl 
of 1.6 mmol/l C21H22N4O6 and 25 μl of CFS were added dropwise 
to a 96-well plate for 15 min at 37°C, followed by 50 μl of 0.01 U/
ml DDP-IV for 1 h at 37°C and 100 μl of 1 mol/l The reaction was 
terminated by the addition of 100 μl of 1 mol/l sodium acetate 
buffer solution (pH = 4.0), and the absorbance of the reaction 
solution was measured at 405 nm using an enzyme marker. The 
DDP-IV inhibition rate was calculated as follows (Hamendra 
et al., 2012):

  
%−−

−
 
 
 
1 100X PRate of  inhibition = ×

S T
∆ ∆
∆ ∆  

(1)

where X is 25 μl of sample + 25 μl of Gly-Pro-Phy + 50 μl of 
DDP-IV + 100 μl of sodium acetate buffer solution, P is 25 μl of 
sample + 50 μl of Tris–HCl + 25 μl of Gly-Pro-Phy + 100 μl of 
sodium acetate buffer solution, S is 25 μl of Tris–HCl + 25 μl of 
Gly-Pro-Phy + 50 μl of DDP-IV + 100 μl of sodium acetate buffer 
solution, and T is 75 μl of Tris–HCl + 25 μl of Gly-Pro-Phy + 100 μl 
of sodium acetate buffer solution.

Bacteria resistance testing

Acid resistance test: The strains were inoculated at 2% (v/v) 
into LB liquid medium at pH 2.0, 3.0, and 4.0 and incubated at 
37°C for 24 h. The number of viable bacteria was determined, and 
the survival rate of the strains was calculated.

Bile salt tolerance test: The activated strain was diluted in 
sterile saline at a multiple of 1 ml in a sterile Petri dish. The dishes 
were then poured with LB solid medium containing 0.5, 1.0, and 
1.5% sodium taurocholate, with LB solid medium without sodium 
taurocholate used as the control group, and incubated at 37°C for 
48 h. Colony counting was carried out, and the survival rate of the 
strains was calculated.

Identification of strains

16S rRNA identification: A total of 18 different morphological 
strains with growth-promoting ability were screened from the 
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common carp intestinal contents, and strain FYN-22 with the best 
growth-promoting activity was selected for 16S rRNA detection. 
The bacterial genomic DNA extraction kit from Beijing Solabao 
Biotechnology was used to extract the DNA. The PCR 
amplification system was a 25 μl system containing: 10× buffer 
(2.5 μl), Taqase (0.5 μl), primer 27F (0.5 μl), primer 1492R (0.5 μl), 
DNA template (1 μl), and ddH2O (20 μl). The reaction procedure 
was set to pre-denaturation at 95°C for 5 min, denaturation at 
94°C for 50 s, annealing at 56°C for 30 s, extension at 72°C for 
1.5 min, 30 cycles of extension at 72°C for 10 min, and storage at 
4°C. The PCR amplification products were sent to RuiBiotech for 
sequencing. The 16S rRNA sequencing results of the strains were 
compared using the NCBI database, and a phylogenetic tree was 
constructed (Yao et al., 2022).

Physiological and biochemical identification: The conserved 
strains were triplicated on solid LB medium plates. Single colonies 
were isolated, and their morphology was described. The strains 
were subjected to Gram staining and physiological and 
biochemical identification according to Bergey’s Manual of 
Determinative Bacteriology.

Media optimization

One-factor-at-a-time (OFAT) 
experiments

Selection of the best carbon source: Bean sprout juice 
medium (bean sprout juice 100 ml, sucrose 10 g, (NH4)2SO4 2 g, 
NaCl 0.6 g, distilled water fixed to 1,000 ml, pH adjusted to 7, 
autoclaved at 115°C for 30 min) was selected as the base medium, 
and 1% of C6H12O6, C5H10O5, C12H22O11, β-C12H22O11 − H2O, 
soluble starch, and corn starch were added to replace the original 
carbon source. The seed solution was inoculated at 0.5% 
inoculum and incubated at 180 rpm for 15 h at 37°C. The optimal 
concentration of carbon source in the medium was determined 
by changing the optimal carbon source concentration and 
incubating again.

Selection of the best organic nitrogen source: Peptone meat, 
peptone germ, peptone soya, peptone casein, casein tryptone, 
yeast, and soybean meal (0.2%) was added to the fermentation 
medium as a nitrogen source and carbon source, with the above 
fermentation conditions.

Selection of the best inorganic nitrogen source: CH4N2O, 
NH4Cl, NH4NO3, NaNO3, (NH4)2C2O4, and NH4H2PO4 (0.2%) 
were added to the fermentation medium as inorganic nitrogen 
sources, along with the corresponding best carbon source and best 
organic nitrogen source, under the same fermentation conditions 
as above.

Optimal inorganic salt screening: FeCl3, MgSO4, CuSO4, 
ZnSO4, CaCO3, FeSO4, and MnCl2 (0.06%) were added to the 
fermentation medium as inorganic salts, along with the 
corresponding optimal carbon and nitrogen sources, under the 
same fermentation conditions as above.

Box–Behnken design and response 
surface analysis

On the basis of the OFAT test, the effect of variations in 
fermentation medium formulation on the spore concentration of 
Bacillus licheniformis FYN-22 fermentation broth was explored 
using a Box–Behnken design (BBD) and RSM methods with four 
factors (carbon source, organic nitrogen source, inorganic 
nitrogen source, and inorganic salt) and three levels (−1, 0, and 1) 
(Table 1). The experimental design and statistical analysis were 
carried out using Design-Expert software, with a total of 29 sets of 
experiments, including five centroids. A quadratic polynomial was 
used to relate the relationship between the independent variables 
and the corresponding values (Equation (2)):

 
Y x x x x= + ∑ + ∑ + ∑β β β β0

2
i i ij i j ii i  

(2)

where Y is the predicted response, xi and xj are independent 
factors, β0 is the model intercept, βi is the linear coefficient, βii is 
the quadratic coefficient, and βij is the interaction coefficient.

Effect of FYN-22 strain On The growth of 
Rice seedlings

Rice LJ31 was used as the test rice. Rice seeds of uniform 
size and full morphology were selected from each treatment 
group and disinfected by submerging the seeds in 70% ethanol 
for 15 min, before rinsing three times with sterile water to 
remove the ethanol residue. Disinfected rice seeds were placed 
in a 100 ml conical flask with 50 ml of the corresponding 
soaking solution and placed in an incubator for 2 days at 
28 ± 0.5°C. After 2 days of germination, the uniformly 
germinated seeds were placed in a hydroponic box and placed 
in a plant light incubator for 14 days at 28°C at room 
temperature. Two groups of treatments were set up: sterile water 
immersion followed by normothermic hydroponics (control 
group) and optimized Bacillus licheniformis FYN-22 (spore 
concentration of 1.913 × 109 CFU/ml) immersion followed by 
normothermic hydroponics (treatment group). The plant light 
incubator conditions were as follows: day/night light duration 
12 h/12 h, light intensity 12,000 lx, and humidity 60%.

TABLE 1 Coded and actual values of the variables for the four-factor 
Box–Behnken experimental design.

Variables Symbol Coded and Actual Values

−1 0 1

Soluble starch 

(× 10−2 g/ml)

A 1.2 1.0 1.4

Yeast (× 10−3 g/ml) B 2.0 2.5 3.0

NH4Cl (× 10−3 g/ml) C 1.0 1.5 2.0

FeCl3 (× 10−3 g/ml) D 0.7 0.8 0.9
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Data analysis and software

Data were analyzed using Design-Expert 12.0.3.0 and SPSS 
13.0, with MEGA 7.0.14 used for plotting phylogenetic trees and 
GraphPad Prism 8.0.1 software used for graphing. Statistical 
analysis was performed using SPSS statistical software. 
Experiments were repeated a minimum three times, and all data 
are expressed as the mean standard error (SD).

Results

Screening and identification of bacteria 
and evaluation of growth-promoting 
activity

As shown in Table 2, a total of 18 different morphological 
strains with growth-promoting ability were screened from 
the common carp intestinal contents. Twelve of these strains 
had the ability to produce DDP-IV inhibitors (FLN-1, FLN-4, 
FLN-25, FLN-26, FYN-1, FYN-2, FYN-4, FYN-8, FYN-9, 
FYN-11, FYN-14, and FYN-22). Among them, strain FYN-14 
had the highest DDP-IV inhibition rate of 62.40% 
(Supplementary Figure S1). Ten strains had the ability to produce 
IAA (FLN-4, FLN-37, FYN-3, FYN-8, FYN-10, FYN-11, FYN-16, 
FYN-21, FYN-22, and FYN-38), with FLN-37 having the strongest 
ability to produce IAA growth hormone at 120.49 μg/ml 
(Supplementary Figure S2). Three strains (FLN-4, FYN-8, and 
FYN-22) had the ability to both inhibit DDP-IV and produce IAA, 
with the best combined effect being seen for FYN-22 (58.72% 
DDP-IV inhibition and 118.55 μg/ml IAA content). Therefore, the 
16S rRNA of strain FYN-22 was sequenced, and a phylogenetic 
tree was constructed (Figure 1), from which it can be seen that 
strain FYN-22 was in the same smallest clade as Bacillus 
licheniformis (KX010087.1), with a close evolutionary distance. 
According to the physiological and biochemical indices (Table 3), 
strain FYN-22 (SUB12101904 FYN-22 OP535852) was tentatively 
identified as Bacillus licheniformis(Bacillus Cohn).

Resistance test for FYN-22 strain

Bacteria perform their probiotic functions by colonizing the 
gastrointestinal tract; hence, the strains must be tolerant to the 
acidity of the gastric juice and the bile salts in the intestine in order 
to perform their probiotic functions. As can be seen from Table 4, 
the effect on FYN-22 spore concentration was lower at pH 3.0 and 
4.0, and a significant decrease in FYN-22 spore concentration 
occurred at pH 2.0, while there was no significant decrease in 
FYN-22 spore concentration when the bile salt concentration was 
increased. This result indicates that FYN-22 strain has a high 
tolerance to pH and bile salts, and it can maintain a relatively high 
activity upon reaching the intestine after passing through the 
gastric juice.

Effect of modified medium components 
on the concentration of FYN-22 spores 
using OFAT

During the optimization of the FYN-22 fermentation medium 
formulation, OFAT was first used to screen the types and initial 
concentration ranges of carbon, inorganic nitrogen, organic nitrogen, 
and inorganic salts, before the medium was further optimized with 
RSM. To the base fermentation medium, 1% of C6H12O6, C5H10O5, 
C12H22O11, β-C12H22O11–H2O, soluble starch, and corn starch were 
added as carbon sources. Figure  2A shows that different carbon 
sources had a relatively significant effect on FYN-22 spore 
concentration, with the highest spore concentration of 5.24 × 108 CFU/
ml for FYN-22 when soluble starch was added as a carbon source.

The effect of the content of soluble starch when used as a 
carbon source on the spore concentration of FYN-22 was 
investigated by varying the amount of soluble starch added, and 
the spore concentration of FYN-22 reached a maximum value of 
5.39 × 108 CFU/ml when soluble starch was added at 1.2 × 10−2 g/
ml (Figure 2B). The spore concentration of FYN-22 was higher 
than the other six organic nitrogen sources when yeast was used 
as the organic nitrogen source (Figure 2C), reaching a maximum 
of 7.47 × 108 CFU/ml when yeast was added at 2.5 × 10−3 g/ml 
(Figure 2D). Compared to organic nitrogen sources, inorganic 
nitrogen sources are relatively homogeneous in composition and 
more stable in quality, making them more readily available for 
rapid use by microorganisms in fermentation media. CH4N2O, 
although organic, is considered an inorganic form of nitrogen in 

TABLE 2 Detection of FYN-22 strain with DDP-IV-inhibitory activity 
and IAA activity. ‘+’ denotes presence of the ability; ‘−’ denotes 
absence of the ability.

Strain 
name

DDP-IV 
Inhibitor 
activity

DDP-IV Inhibitor 
Inhibition rates 
(%)

IAA 
Activity

IAA 
Content 
(μg/mL)

FLN-1 + 44.38 − −

FLN-4 + 29.76 + 75.44

FLN-25 + 17.54 − −

FLN-26 + 26.30 − −

FLN-37 − − + 120.49

FYN-1 + 13.87 − −

FYN-2 + 35.43 − −

FYN-3 − − + 56.86

FYN-4 + 60.59 − −

FYN-8 + 27.68 + 28.77

FYN-9 + 52.45 − −

FYN-10 − − + 43.28

FYN-11 + 33.42 + 87.34

FYN-14 + 62.40 − −

FYN-16 − − + 37.69

FYN-21 − − + 105.49

FYN-22 + 58.73 + 118.55

FYN-38 − − + 13.80
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this experiment as it provides ammonium nitrogen when used as 
a nitrogen source for the media. As shown in Figures 2E,F, the 
spore concentration of FYN-22 reached a maximum of 
7.92 × 108 CFU/ml when NH4Cl was used as the inorganic nitrogen 
source at a concentration of 1.5 × 10−3 g/ml. From Figure 2G, it can 
be seen that different types of inorganic salts had a significant 
effect on the spore concentration of FYN-22. When FeCl3 was 

selected as the inorganic salt to be added to the fermentation 
medium, the spore concentration of FYN-22 was significantly 
enhanced compared to other inorganic salts. The spore 
concentration of FYN-22 reached a maximum value of 
8.75 × 108 CFU/ml when the FeCl3 concentration was 0.8 × 10−3 g/
ml (Figure 2H). From the above results, it was shown that the 
spore concentration of FYN-22 could be  influenced to some 
extent by changing the type and content of the different 
components of the fermentation medium.

Effect of modified medium components 
on the concentration of FYN-22 spores 
using RSM

According to the OFAT experiment, the results of the 
formulation test for the fermentation culture of FYN-22 were 
obtained using the Design-Expert software with the addition of 
soluble starch (A), Yeast (B), NH4Cl (C), and FeCl3 (D) as test 
factors and the concentration of FYN-22 spores as the response 
variable (Table 5). Multiple regressions were fitted to the response 

FIGURE 1

Phylogenetic tree was constructed based on the 16S rRNA sequence of the FYN-22 strain. The numbers at the nodes indicate the percentages of 
bootstrap sampling derived from 1,000 replications. GenBank accession numbers are given in parentheses. 0.00050 in the legend is the distance 
scale.

TABLE 3 Detection of physiological and biochemical parameters of 
the FYN-22 strain. ‘+’ denotes presence of the ability; ‘−’ denotes 
absence of the ability.

Examining 
Item

Results Examining Item Results

Gram stain test Positive Arabinose +

Contact enzyme test + Xylose +

Oxidase test + Mannose −

Voges–Proskauer test + Glucose production test −

Methyl red test + Hydrolysis of starch +

Reduction of nitrate + Citrate +

Glucose + Growth at 50°C +
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values to obtain a quadratic regression model of FYN-22 spore 
concentration (Y) as a function of the four coded independent 
variables (Equation (3)), and analysis of variance (ANOVA) was 
performed on the regression equations. As can be  seen from 
Table 6, the quadratic term model chosen for this test was highly 
significant (p < 0.01); the lack of fit (p = 0.0731) was not significant 
(>0.05), indicating that the test data were highly consistent with 
the model. The coefficient of variation (CV) reflects the confidence 
and accuracy of the test validation, and the CV obtained in this 
test was 2.72% (<10%), indicating that the equation had a high 

degree of confidence and accuracy (Yu et al., 2009). The coefficient 
of determination R2 = 0.9216 and the corrected coefficient of 
determination Adj-R2 = 0.8433 indicate that this equation was a 
good fit, and the model could successfully be used for prediction. 
In the regression model, the primary terms A, B, C, and D had a 
large effect on the response values and all reached a highly 
significant level (p < 0.01); the interaction term AB reached a 
significant level (p < 0.05), and the secondary terms C2 and D2 also 
reached a significant level (p < 0.05), indicating that the effect of 
each factor on the concentration of FYN-22 spores was not a 

TABLE 4 Acid and bile salt tolerance test for FYN-22 strain.

FYN-22 Initial 
spore 
concentration 
(× 108 CFU/ml)

pH FYN-22 spore 
concentration 

(× 108 CFU/ml)

Survival 
rate (%)

FYN-22 Initial 
spore 

concentration 
(× 108 CFU/ml)

Bile salt 
concentration 

(%)

FYN-22 spore 
concentration 

(× 108 CFU/ml)

Survival 
rate (%)

3.78 2.0 3.25 85.98 3.62 0.5 3.39 93.65

3.0 3.52 93.12 1.0 3.27 90.33

4.0 3.64 96.30 1.5 3.16 87.29

A B C D

E F G H

FIGURE 2

Effect of OFAT optimized carbon source composition (A), soluble starch concentration (B), organic nitrogen source composition (C), yeast 
concentration (D), inorganic nitrogen source composition (E), NH4Cl concentration (F), inorganic salt composition (G), and FeCl3 concentration 
(H) on the concentration of FYN-22 spores. Error bars indicate standard error (n = 3).
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simple linear relationship. The F-value reflects the importance of 
each factor with respect to the response variable, with a larger 
F-value indicating a greater influence. From the magnitude of the 
F-values in Table 6, it can be judged that the order of influence of 
the four factors on FYN-22 spore concentration within the 
selected level range was soluble starch (15.25) > NH4Cl 
(14.76) > yeast (13.81) > FeCl3 (11.57).

 

2

2 2 2

1.84 0.0517 0.0492 0.0505
0.0450 0.0650 – 0.0275 – 0.0275
0.0001 – 0.0075 0.0100 – 0.0997 –
0.01610 0.0460 – 0.0698

= − − + +
+ +

+

−

Y A B C
D AB AC AD
BC BD CD A

B C D  

(3)

Here, Y is the spore concentration of FYN-22, A is the coded 
value of soluble starch, B is the coded value of yeast, C is the coded 
value of NH4Cl, and D is the coded value of FeCl3.

The response surface 3D plot is a graphical representation of 
the regression equation from which the optimal parameters, the 
effect of the interaction between the variables on the response 
value, and the maximum response value can be  determined 
visually and quickly. The contour line is the projection of the 
response surface in the horizontal direction. An elliptical shape of 
the contour line indicates a significant interaction between the two 
factors, while a circular shape indicates an insignificant interaction 
between the two factors (Kun et al., 2013). Figure 3A demonstrates 
the effect of the interaction of soluble starch and yeast on the spore 
concentration of FYN-22 strain when the fixed NH4Cl and FeCl3 
levels were 1.5 × 10−3 g/ml and 0.8 × 10−3 g/ml, respectively, and the 
soluble starch concentration increased from 1.0 × 10−2 g/ml to 
1.4 × 10−2 g/ml and that of yeast increased from 2.0 × 10−3 g/ml to 
3.0 × 10−3 g/ml. The spore concentrations of FYN-22  in the 
fermentation broth all showed a trend of increasing and then 
decreasing. The highest point of the surface was the maximum 
point of spore concentration (1.8559 × 109 CFU/ml), the maximum 
value obtained from the response surface fell in the smallest ellipse 
in the contour plot, and the contour plot was elliptical, indicating 
that the interaction between soluble starch and yeast was more 
significant. Figure 3B illustrates the interaction of soluble starch 
and NH4Cl. According to the contours, it is clear that there was no 
significant effect of the two factors on FYN-22 spore concentration, 
whereby the levels of soluble starch (up to 1.13006 × 10−2 g/ml) and 
NH4Cl (up to 1.82873 × 10−3 g/ml) led to an increase in the 
concentration of FYN-22 spores. When the levels of soluble starch 
and NH4Cl exceeded 1.13006 × 10−2 g/ml and 1.82873 × 10−3 g/ml, 
respectively, there was a greater negative impact on FYN-22 spore 

TABLE 5 Response surface methodology design and results.

Exp.
Run

Factors Spore 
concentration 

(× 109 CFU/
ml)

Soluble 
starch 
(× 10−2  
g/ml)

Yeast 
(× 10−3  
g/ml)

NH4Cl 
(× 10−3  
g/ml)

FeCl3 
(× 10−3  
g/ml)

1 1.2 2.5 1.5 0.8 1.81

2 1.2 2.5 1.5 0.8 1.84

3 1.2 2.5 1.5 0.8 1.87

4 1.2 2.5 1.5 0.8 1.86

5 1.2 2.5 1.5 0.8 1.83

6 1.2 3.0 1.5 0.9 1.64

7 1.2 2.0 1.5 0.9 1.75

8 1.2 3.0 1.5 0.7 1.5

9 1.2 2.0 1.5 0.7 1.58

10 1.4 2.5 2.0 0.8 1.67

11 1.0 2.5 2.0 0.8 1.88

12 1.4 2.5 1.0 0.8 1.58

13 1.0 2.5 1.0 0.8 1.68

14 1.2 3.0 2.0 0.8 1.63

15 1.2 2.0 2.0 0.8 1.74

16 1.2 3.0 1.0 0.8 1.52

17 1.2 2.0 1.0 0.8 1.63

18 1.4 2.5 1.5 0.9 1.62

19 1.0 2.5 1.5 0.9 1.71

20 1.4 2.5 1.5 0.7 1.68

21 1.0 2.5 1.5 0.7 1.66

22 1.2 2.5 2.0 0.9 1.82

23 1.2 2.5 1.0 0.9 1.75

24 1.2 2.5 2.0 0.7 1.68

25 1.2 2.5 1.0 0.7 1.65

26 1.4 3.0 1.5 0.8 1.54

27 1.0 3.0 1.5 0.8 1.53

28 1.4 2.0 1.5 0.8 1.5

29 1.0 2.0 1.5 0.8 1.75

TABLE 6 ANOVA analysis for response surface quadratic model.

Source Sum of 
squares

DF Mean 
square

F 
value

Prob > 
F

Model 0.3459 14 0.0247 11.76 <0.0001 Significant

A (soluble 

starch)

0.0320 1 0.0320 15.25 0.0016 Significant

B (yeast) 0.0290 1 0.0290 13.81 0.0023 Significant

C (NH4Cl) 0.0310 1 0.0310 14.76 0.0018 Significant

D (FeCl3) 0.0243 1 0.0243 11.57 0.0043 Significant

AB 0.0169 1 0.0169 8.05 0.0132 Significant

AC 0.0030 1 0.0030 1.44 0.2500

AD 0.0030 1 0.0030 1.44 0.2500

BC 0.0001 1 0.0001 0.0001 1.0000

BD 0.0002 1 0.0002 0.1071 0.7483

CD 0.0004 1 0.0004 0.1904 0.6692

A2 0.0645 1 0.0645 30.73 <0.0001

B2 0.1681 1 0.1681 80.05 <0.0001

C2 0.0137 1 0.0137 6.53 0.0228 Significant

D2 0.0316 1 0.0316 15.02 0.0017 Significant

Residual 0.0294 14 0.0021

Lack of fit 0.0271 10 0.0027 4.76 0.0731 Not significant

Pure error 0.0023 4 0.0006

Corr total 0.3753 28
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concentrations. As shown in Figure 3C, the interaction between 
soluble starch and FeCl3 was not significant. With increasing 
concentrations of soluble starch and FeCl3, the concentration of 
FYN-22 spores showed a trend of first increasing and then 
decreasing. When the soluble starch concentration was maintained 
at 1.1376 × 10−2 g/ml, and the FeCl3 concentration was maintained 
at 0.8384 × 10−3 g/ml, the FYN-22 spore concentration showed a 
high level (1.8587 × 109 CFU/ml). As can be seen in Figure 3D, 
yeast showed a trend of increasing and then decreasing when the 
concentration of NH4Cl was certain, and the slope of the response 
surface was steep, indicating that yeast had a greater effect on the 
concentration of FYN-22 spores. When yeast concentration 
reached 2.4238 × 10−3 g/ml, the concentration of NH4Cl 
(1.7762 × 10−3 g/ml) had a better promotion effect on FYN-22 
spore concentration (1.8598 × 109 CFU/ml); however, at higher 
levels, both NH4Cl and yeast had a negative effect on FYN-22 
spore concentration. As can be seen in Figure 3E, the interaction 
between yeast and FeCl3 had no significant effect on FYN-22 spore 
concentrations. When FeCl3 was maintained at a certain 
concentration, the increase in yeast concentration influenced the 
change in FYN-22 spore concentration to a greater extent. At a 

yeast concentration of 2.4198 × 10−3 g/ml, the FYN-22 spore 
concentration reached a high level of 1.8534 × 109 CFU/ml, with a 
steep slope of the response surface and an overall trend of 
increasing and then decreasing. As can be seen in Figure 3F, when 
the concentrations of soluble starch and yeast were fixed at 
1.5 × 10−2 g/ml and 0.8 × 10−3 g/ml, respectively, the NH4Cl 
concentration increased from 1.0 × 10−3 g/ml to 2.0 × 10−3 g/ml, 
and that of FeCl3 increased from 0.7 × 10−3 g/ml to 0.9 × 10−3 g/ml. 
The spore concentration of FYN-22 in the fermentation broth 
showed a trend of first increasing and then decreasing, with a 
relatively gentle slope of the surface, at which point the highest 
point of the surface was the maximum point of spore concentration 
(1.8653 × 109 CFU/ml).

In summary, the magnitude of the interaction between the 
factors was in the order of soluble starch and yeast > soluble starch 
and NH4Cl = soluble starch and FeCl3 > CNH4Cl and FeCl3 > yeast 
and FeCl3 > yeast and NH4Cl. These results indicate that the 
content of FYN-22 spore concentration increased rapidly with 
increasing soluble starch content.

The software was used to solve the regression equation to 
predict the optimal formulation of Bacillus licheniformis FYN-22 

A B C

D E F

FIGURE 3

Three-dimensional contour plots of RSM for combined effects of (A) soluble starch and yeast, (B) soluble starch and NH4Cl, (C) soluble starch and 
FeCl3, (D) yeast and NH4Cl, (E) yeast and NH4Cl, and (F) yeast and FeCl3 on FYN-22 spore concentration (n = 3).
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TABLE 7 Effect of FYN-22 strain on the growth of rice seedlings 
(n = 20).

Groups Root 
length 
(mm)

Shoot 
length 
(mm)

Fresh 
weight (mg)

Dry 
weight 
(mg)

Control 9.92 ± 0.49 10.08 ± 0.40 127.33 ± 36.05 20.76 ± 3.41

Treatment 11.58 ± 0.47 14.95 ± 1.29 150.83 ± 36.35 25.32 ± 2.55

fermentation medium within the tested factor levels of soluble 
starch 10.9605 g/l, yeast 2.3657 g/l, NH4Cl 1.8808 g/l, and FeCl3 
0.8495 g/l, and an optimized concentration of 1.8925 × 109 CFU/
ml of FYN-22 spores was predicted in the fermentation broth. 
Considering practical feasibility, the medium formulation was 
amended to soluble starch 10.961 g/l, yeast 2.366 g/l, NH4Cl 
1.881 g/l, and FeCl3 0.850 g/l. Under these conditions, the actual 
measured FYN-22 spore concentration in the fermentation broth 
was 1.913 × 109 CFU/ml, which was 101.083% of the theoretical 
value (this validation test was repeated three times), and the 
predicted and measured values were basically the same, indicating 
that the regression equation could reflect the influence of various 
factors on the FYN-22 spore concentration in the fermentation 
broth in a more realistic way.

Effect of FYN-22 strain on the growth of 
rice seedlings

Rice is mainly grown by transplanting seedlings; hence, the 
length of the seedling and the morphological structure of the root 
system play very important roles in the colonization of the rice plant 
after transplanting, as well as in the later growth of the rice plant. 
Under hydroponic box culture conditions, the FYN-22 strain had a 
more pronounced growth-promoting effect on rice (Figure 4). As 
can be seen from the Table 7, the rice shoot lengths exhibited a 
highly significant increase (p < 0.01), with a 48.31% increase in the 
treatment group compared to the control. FYN-22 also affected the 
root length, fresh weight, and dry weight of rice to varying degrees, 
raising them by 16.73%, 17.80, and 21.97%, respectively (p < 0.05).

Discussion

Spores are the propagules produced by microorganisms and 
are an important intermediate in the production of microbial 
fermentation. The quality and quantity of spores have a significant 
impact on fermentation yield and biological activity, which are 
influenced by a combination of factors such as nutrients and the 
environment. Spore concentration is an important indicator in the 
determination of biocontrol formulations. Optimization of the 
culture medium and fermentation conditions to increase spore 
concentration can provide a guarantee for the industrial 
production and application of biocontrol formulations. The 
fermentation conditions during microbial fermentation have a 
decisive influence on the growth of microorganisms and the 
production of microbial secondary metabolites. Suitable carbon, 
nitrogen, and inorganic salts can promote the growth of strains 
and the production of secondary metabolites (Wen et al., 2020).

The carbon source is one of the most important components of 
the culture medium, responsible for providing energy for the cells, 
forming the carbon shelf, and synthesizing metabolites. Common 
carbon source substances mainly include carbohydrates, lipids, and 
organic acids. In this study, different carbon source substances were 

optimized using OFAT experiments, and it was found that soluble 
starch as a carbon source increased the spore concentration in the 
fermentation broth of the FYN-22 strain (Figure 2A). Soluble starch 
is a phytose carbon source that is degraded to glucose during 
bacterial fermentation, which is then taken up and converted by the 
cells. Glucose is the preferred carbon source for bacteria, but excess 
glucose can also inhibit bacterial growth and metabolic metabolism 
(Hans et  al., 2003; Chen et  al., 2019). The slow degradation of 
soluble starch to glucose ensures that there is no significant 
accumulation of glucose in the medium, thus avoiding the negative 
effects caused by excess glucose. Yaseen et al. (2017), on the other 
hand, found that different carbon and nitrogen sources affected the 
expression of the panglosin promoter, and that the activity of the 
panglosin promoter could be increased when urea or a mixture of 
urea and ammonium salts was used as the nitrogen source and 
when mannitol was used as the carbon source, thus increasing its 
production (Yaseen et al., 2017).

Nitrogen-derived substances are the main building blocks of 
proteins and nucleic acids in microbial cells, having an important 
influence on cell growth and, in turn, on the relevant biochemical 
reactions in the cell. Due to the complex composition of nitrogen 
sources, the nutrients contained in different nitrogen source types 
vary greatly, and the effects of various nitrogen sources on the 
growth and yield of the bacteria vary significantly. When many 
kinds of nitrogen source substances are present in the environment 

FIGURE 4

Effect of FYN-22 strain on the growth of rice seedlings.
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at the same time, ammonium salts and glutamine, which are easily 
absorbed and utilized, can be  preferentially utilized (Marzluf, 
1997; Hajjaj et al., 2001; Wong et al., 2008). In this study, different 
nitrogen source substances were optimized using OFAT 
experiments, and it was found that organic (yeast) and inorganic 
(NH4Cl) nitrogen sources increased the bacterial concentration in 
the fermentation broth of strain FTN-22(Figures 2C,E). Nitrogen 
sources are extremely important to Bacillus licheniformis (Kim 
et  al., 2008), and yeast contains a wide variety of proteins, 
inorganic salts, vitamins, and growth-promoting factors that are 
more nutritious and promote greater protease production than 
other nitrogen sources (Zhilong et al., 2009; Wang et al., 2019). 
NH4Cl as a secondary nitrogen source can improve the growth 
rate and enzyme yield of the strain, and the combination of 
organic and inorganic nitrogen sources can provide nutrients to 
the strain more fully (Rey et al., 2004).

As a physiologically active substance, inorganic salts 
regulate the growth of microorganisms and enzyme 
production and are an indispensable part of the composition 
of fermentation media. Studies have shown that Na+ and K+ 
play a regulatory role in cellular osmotic pressure; Mn2+ is an 
important enzyme activator; Ca2+ promotes the production of 
budding spores in Bacillus spp.; Cu2+ only promotes the 
growth of the strain at low concentrations, and, when the 
concentration increases, it inhibits the growth of the 
bacterium, while Zn2+ only inhibits the growth and 
reproduction of the strain without promoting it; phosphate 
can adjust the pH of the fermentation broth and maintain a 
relatively stable pH of the fermentation broth; Fe3+ can be used 
by iron-containing cells (Pham et al., 2021; Zhang et al., 2021; 
Kruppa and Czermak, 2022). In this study, different inorganic 
salts were optimized using OFAT experiments, and it was 
found that using FeCl3 as the source of inorganic salt increased 
the spore concentration in the fermentation broth of the 
FYN-22 strain. Iron ions are utilized early in the growth of the 
bacterium and are re-released into the medium after spore 
formation; Kolodziej and Slepecky (1964), demonstrated that 
the addition of iron ions, although not essential for spore 
formation, increased spore formation (Kolodziej and Slepecky, 
1964). Interestingly, Fe3+ was more effective than Fe2+ in 
promoting the growth of the FTN-22 strain than the FTN-22 
strain (Figure 2G), mainly because Fe2+ tends to form chelators 
with the lipopeptides synthesized by the bacterium, thus 
inhibiting its promoting effect, whereas Fe3+ is not affected by 
this. The bacterium can form and utilize Fe-containing cells, 
which mainly take up Fe3+; during the subsequent uptake and 
transport of Fe-containing cells, Fe3+ is reduced to Fe2+ and 
utilized by the bacterium.

RSM is a combination of mathematical and statistical methods 
to seek the best conditions in a multifactor system, to model and 
analyze response problems influenced by multiple variables, to 
shorten the optimization time, and to improve the credibility of 
the application; the method has a low number of experiments, 
short cycle time, and high accuracy (Tamilarasan et al., 2022). For 

traditional mathematical and statistical methods, OFAT 
experiments can only consider the influence of a single factor and 
cannot determine whether there is an interaction between the 
factors. Although orthogonal tests can determine the interaction 
between factors, they require a large number of tests, need explicit 
functional expressions, and can only deal with discrete-level 
values. RSM largely compensates for the shortcomings of these 
two traditional mathematical and statistical methods by not only 
studying the interaction between several factors, but also 
predicting the response values outside the region, using a smaller 
number of trials to obtain highly precise regression equations and, 
thus, obtaining optimal combinations between multiple 
experimental variables (Walbi et al., 2022). Currently, RSM is used 
in food science, medicine, the chemical industry, and engineering. 
In this study, the optimal range of Bacillus licheniformis FYN-22 
strains was screened using OFAT experiments, and the optimal 
fermentation recipe was derived using RSM.

Most of the physiological activities of plants are regulated by 
one or more plant hormones, mainly IAA, CTK, Gas, abscisic acid 
(ABA), ethylene, salicylic acid, jasmonic acid, and brassinolide; 
growth hormones represent the most indispensable part of plants. 
They have been reported not only in plants, but also in bacteria 
and fungi (Spaepen and Vanderleyden, 2011; Duca and Glick, 
2020). IAA is a growth hormone that acts on the whole process of 
plant growth and development. IAA affects plant cell division, 
elongation, differentiation, seed germination, root development, 
and the process of nutritional growth (Phillips et al., 2011). In 
dicotyledonous plants, IAA promotes the production of lateral 
roots; in monocotyledonous plants, it promotes the formation of 
adventitious roots. The response of IAA to the plant is influenced 
by light, gravity, and the flowering and fruiting stages of the plant, 
and it is important in terms of plant photosynthesis, pigment 
formation, synthesis of various metabolites, and stress resistance 
(Woodward et al., 2010). Several genera have been reported in the 
literature to have the ability to secrete IAA (Patten and Glick, 
1996). Since 1978 (Tien et al., 1979), when bacteria were first 
discovered to be  able to produce IAA, a large number of 
IAA-producing strains have been discovered over the past 
40 years, with Pseudomonas spp. (Ying et al., 2012) and Bacillus 
spp. (Shim et al., 2015) dominating the list. The growth-promoting 
effect of growth-promoting bacteria applied to substrates on crop 
seedlings has been demonstrated in seedlings of pepper (Yingnan 
et al., 2019), cabbage (Henry et al., 2015), and tomato (Cochard 
et al., 2022). The mechanism of action of probiotic bacteria on 
crops is firstly manifested in the effect on the crop root system, the 
morphological structure of which affects the ability of the root 
system to obtain water and nutrient resources from the soil and 
furthermore affects the growth of the above-ground parts of the 
crop (Venkatachalam et al., 2019; Mulatu et al., 2021). In this 
study, it was found that the plants that continued to be cultured 
after the seed-soaking operation using strain FYN-22 on 
germinating rice had a significant increase in shoot length, root 
length, fresh weight, and dry weight, which was more favorable to 
the growth of rice in the case of direct seeding (Table 7).
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The main physiological function of sugars is to provide 
energy for the animal organism, and they are often added to 
feed as a cheap source of energy during animal breeding. Fish, 
especially carnivorous fish, are less able to use sugars compared 
to terrestrial animals, and some even have certain physiological 
characteristics innately characteristic of diabetics (Wilson and 
Poe, 1987). It has been shown that common carp has much 
higher insulin levels than terrestrial mammals, even in the 
fasted state (Dixon and Hilton, 1981); in glucose tolerance 
tests, the vast majority of fish showed persistent symptoms of 
hyperglycemia after glucose infusion (Hertz et  al., 1989). 
Generally speaking, enteroglucagon has the function of 
promoting insulin secretion and inhibiting glucagon secretion, 
thus achieving hypoglycemic effects, but enteroglucagon is 
susceptible to degradation by dipeptidyl peptidase-IV 
(DDP-IV) and is inactive (Moon, 2001). Strains with DDP-IV 
inhibitors inhibit dipeptidyl peptidases and prolong the half-
life of the enteric insulin glucagon-like peptide (GLP-1) and 
glucagon-releasing peptide (GIP), thereby indirectly lowering 
blood glucose (Matuci and Giampietro, 2009). Therefore, in 
this study, strains with DDP-IV-producing inhibitors were 
screened from the RF system with up to 58.73% inhibition 
(Table 2), and the acid and bile salt tolerance of the strains was 
measured, indicating that the strains have a higher probability 
of colonizing the fish gut and, thus, improving the 
hyperglycemic condition of the fish.

RF acts as a small ecosystem, with microorganisms widely 
distributed in the fish, water, soil, and plants. Microorganisms 
attached to water bodies, weeds, and phytoplankton can 
colonize the gut of common carp through their feeding 
activities and have an impact on the fish (Zhang et al., 2022). 
The microorganisms in the fish gut also spread into the water 
and soil with the fish excretion, while some strains of bacteria 
can colonize the water body and, thus, improve the water 
environment. Some studies have shown that the pesticides and 
fertilizers used in rice cultivation seriously harm the water 
environment, leaving large amounts of harmful substances in 
the ecosystem, as well as inducing eutrophication, which can 
be eliminated to some extent through microbial metabolism 
(Kong et al., 2022). On the other hand, some strains also settle 
into the soil, and these microorganisms undertake several 
important ecosystem functions including soil carbon and 
nitrogen cycling, helping to alleviate problems such as reduced 
soil fertility and soil consolidation caused by rice cultivation 
(Daniel et al., 2022). The microorganisms that settle into the 
soil not only improve the soil environment, but a proportion 
of the bacteria also act as plant growth-promoting 
rhizobacteria (PGPR) to contribute directly or indirectly to 
the growth and health effects of rice (Bhattacharyya and Jha, 
2012; Hacquard et al., 2015). Microorganisms, therefore, play 
an important role in RF, directly affecting the quality of 
aquatic products, the water quality soil environment, and the 
regulation of the growth of rice plants (Kim et al., 2008). In 
this experiment, targeted screening of strains with 

DDP-IV-inhibitory ability, IAA activity, and resistance to 
stress in the RF system could, to some extent, improve 
hyperglycemia in common carp in the RF system and promote 
germination of rice seedlings.

Conclusion

In this study, strain FYN-22 with strong DDP-IV inhibition 
and IAA production capacity was screened from the intestinal 
contents of common carp, initially identified as Bacillus 
licheniformis, and verified for its resistance. OFAT experiments 
were used to screen the types of carbon, nitrogen, and 
inorganic salts for the FYN-22 fermentation medium and to 
determine the corresponding ranges. Individual effects and 
interactions among the four factors screened using OFAT 
experiments for soluble starch (carbon source), yeast (organic 
nitrogen source), NH4Cl (inorganic nitrogen source), and 
FeCl3 (inorganic salt) were determined using RSM. The spore 
concentration of Bacillus licheniformis FYN-22 at a soluble 
starch concentration of 10.961 g/l, yeast concentration of 
2.366 g/l, NH4Cl concentration of 1.881 g/l, and FeCl3 
concentration of 0.850 g/l reached 1.913 × 109 CFU/ml, which 
was 2.575-fold greater than the value before optimization. The 
optimized fermentation broth was used for the immersion 
culture of rice seeds, and it was found that strain FYN-22 
significantly increased the shoot length, root length, fresh 
weight, and dry weight of rice seedlings, indicating that strain 
FYN-22 has a good growth-promoting effect. In the future, 
research will focus on the interaction between the FYN-22 
strain and common carp, with practical extension in RF 
ecosystems and large-scale industrial production.
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