82 research outputs found

    Expression of the chemokine receptor CXCR4 in human hepatocellular carcinoma and its role in portal vein tumor thrombus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was conducted to investigate the expression of CXCR4 in portal vein tumor thrombus (PVTT) tissue and its possible role in the invasiveness of tumor thrombus cells.</p> <p>Methods</p> <p>We detected differential expression of CXCR4 between PVTT and hepatocellular carcinoma (HCC) by an immunohistochemical assay. Lentivirus-mediated RNA interference and a migration assay were performed on human primary cells derived from PVTT to study the impact of CXCR4 on the invasiveness of HCC.</p> <p>Results</p> <p>The expression of CXCR4 in tumor thrombus tissue was higher than that in HCC tissue. The invasion ratio of PVTT cells was significantly decreased (P < 0.05) after being infected with a CXCR4-targeting siRNA lentivirus, indicating that downregulation of CXCR4 by lentivirus-mediated RNA interference significantly impaired the invasive potential of PVTT.</p> <p>Conclusions</p> <p>These results indicate that CXCR4 is an effective curative target for hepatocellular carcinomas with PVTT.</p

    Experimental Conditions That Influence the Utility of 2′7′-Dichlorodihydrofluorescein Diacetate (DCFH2-DA) as a Fluorogenic Biosensor for Mitochondrial Redox Status

    Get PDF
    Oxidative stress has been causally linked to various diseases. Electron transport chain (ETC) inhibitors such as rotenone and antimycin A are frequently used in model systems to study oxidative stress. Oxidative stress that is provoked by ETC inhibitors can be visualized using the fluorogenic probe 2′,7′-dichlorodihydrofluorescein-diacetate (DCFH2-DA). Non-fluorescent DCFH2-DA crosses the plasma membrane, is deacetylated to 2′,7′-dichlorodihydrofluorescein (DCFH2) by esterases, and is oxidized to its fluorescent form 2′,7′-dichlorofluorescein (DCF) by intracellular ROS. DCF fluorescence can, therefore, be used as a semi-quantitative measure of general oxidative stress. However, the use of DCFH2-DA is complicated by various protocol-related factors that mediate DCFH2-to-DCF conversion independently of the degree of oxidative stress. This study therefore analyzed the influence of ancillary factors on DCF formation in the context of ETC inhibitors. It was found that ETC inhibitors trigger DCF formation in cell-free experiments when they are co-dissolved with DCFH2-DA. Moreover, the extent of DCF formation depended on the type of culture medium that was used, the pH of the assay system, the presence of fetal calf serum, and the final DCFH2-DA solvent concentration. Conclusively, experiments with DCFH2-DA should not discount the influence of protocol-related factors such as medium and mitochondrial inhibitors (and possibly other compounds) on the DCFH2-DA-DCF reaction and proper controls should always be built into the assay protocol

    Contribution of Hepatitis B Virus Infection to the Aggressiveness of Primary Liver Cancer: A Clinical Epidemiological Study in Eastern China

    Get PDF
    Background and aims: The contribution of hepatitis B virus (HBV) infection to the aggressiveness of primary liver cancer (PLC) remains controversial. We aimed to characterize this in eastern China.Methods: We enrolled 8,515 PLC patients whose specimens were reserved at the BioBank of the hepatobiliary hospital (Shanghai, China) during 2007–2016. Of those, 3,124 who received primary radical resection were involved in survival analysis. A nomogram was constructed to predict the survivals using preoperative parameters.Results: Hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and combined hepatocellular cholangiocarcinoma (CHC) accounted for 94.6, 3.7, and 1.7%, respectively. The rates of HBV infection were 87.5, 49.2, and 80.6%, respectively. HBV infection was significantly associated with 10-year earlier onset, more cirrhosis, higher α-fetoprotein, higher carbohydrate antigen 19-9 (CA19-9), more microvascular invasion (MVI), lower neutrophil-to-lymphocyte ratio (NLR), and lower platelet-to-lymphocyte ratio (PLR) in HCC. HBV infection was also associated with 7-year earlier onset, more cirrhosis, higher α-fetoprotein, more MVI, and lower PLR in ICC. In the multivariate Cox analysis, high circulating HBV DNA, α-fetoprotein, CA19-9, NLR, tumor size, number, encapsulation, Barcelona Clinic Liver Cancer (BCLC) stage, and MVI predicted an unfavorable prognosis in HCC; only CA19-9 and BCLC stage, rather than HBV-related parameters, had prognostic values in ICC. A nomogram constructed with preoperative HBV-related parameters including HBV load, ultrasonic cirrhosis, and α-fetoprotein perform better than the current staging systems in predicting postoperative survival in HCC.Conclusion: HBV promotes the aggressiveness of HCC in Chinese population. The contributions of HBV to ICC and other etiological factors to HCC might be indirect via arousing non-resolving inflammation

    Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy

    Get PDF
    Background and aim: A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. Methods: Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. Results: The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. Conclusions: AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization

    Metallated phthalocyanines and their hydrophilic derivatives for multi-targeted oncological photodynamic therapy

    Get PDF
    Background and aim: A photosensitizer (PS) delivery and comprehensive tumor targeting platform was developed that is centered on the photosensitization of key pharmacological targets in solid tumors (cancer cells, tumor vascular endothelium, and cellular and non-cellular components of the tumor microenvironment) before photodynamic therapy (PDT). Interstitially targeted liposomes (ITLs) encapsulating zinc phthalocyanine (ZnPC) and aluminum phthalocyanine (AlPC) were formulated for passive targeting of the tumor microenvironment. In previous work it was established that the PEGylated ITLs were taken up by cultured cholangiocarcinoma cells. The aim of this study was to verify previous results in cancer cells and to determine whether the ITLs can also be used to photosensitize cells in the tumor microenvironment and vasculature. Following positive results, rudimentary in vitro and in vivo experiments were performed with ZnPC-ITLs and AlPC-ITLs as well as their water-soluble tetrasulfonated derivatives (ZnPCS4 and AlPCS4) to assemble a research dossier and bring this platform closer to clinical transition. Methods: Flow cytometry and confocal microscopy were employed to determine ITL uptake and PS distribution in cholangiocarcinoma (SK-ChA-1) cells, endothelial cells (HUVECs), fibroblasts (NIH-3T3), and macrophages (RAW 264.7). Uptake of ITLs by endothelial cells was verified under flow conditions in a flow chamber. Dark toxicity and PDT efficacy were determined by cell viability assays, while the mode of cell death and cell cycle arrest were assayed by flow cytometry. In vivo systemic toxicity was assessed in zebrafish and chicken embryos, whereas skin phototoxicity was determined in BALB/c nude mice. A PDT efficacy pilot was conducted in BALB/c nude mice bearing human triple-negative breast cancer (MDA-MB-231) xenografts. Results: The key findings were that (1) photodynamically active PSs (i.e., all except ZnPCS4) were able to effectively photosensitize cancer cells and non-cancerous cells; (2) following PDT, photodynamically active PSs were highly toxic-to-potent as per anti-cancer compound classification; (3) the photodynamically active PSs did not elicit notable systemic toxicity in zebrafish and chicken embryos; (4) ITL-delivered ZnPC and ZnPCS4 were associated with skin phototoxicity, while the aluminum-containing PSs did not exert detectable skin phototoxicity; and (5) ITL-delivered ZnPC and AlPC were equally effective in their tumor-killing capacity in human tumor breast cancer xenografts and superior to other non-phthalocyanine PSs when appraised on a per mole administered dose basis. Conclusions: AlPC(S4) are the safest and most effective PSs to integrate into the comprehensive tumor targeting and PS delivery platform. Pending further in vivo validation, these third-generation PSs may be used for multi-compartmental tumor photosensitization

    Electric field measurements in an atmospheric-pressure microplasma jet using Stark polarization emission spectroscopy of helium atom

    No full text
    Electric field in an atmospheric-pressure microplasma jet, determined by a non-invasive Stark polarization spectroscopy of He 447.1 nm line, is reported in this work. The microplasma jet was driven by a positive pulsed dc power supply with pulse rising time of 60 ns. First, the electric field strength in the streamer head (Eh) is in the range of 9–17 kV/cm. Second, as the streamer head is shooting out of the tube exit, Eh starts to increase rapidly and then decreases after reaching a maximum of 17 kV/cm, indicating the same tendency of streamer velocity. However, a further analysis reveals that the relationship between the electric field and the streamer velocity is non-linear. Third, although the pulse width plays an important role in the control of the length of plasma plume, it has a minor effect on Eh. Fourth, the electric field strength in the secondary discharge is estimated to be less than 6 kV/cm, which further validates the similarity between the secondary discharge and negative discharge. Finally, over atmospheric-pressure plasmas transferring across the glass tube, the electric field in the head of newborn secondary streamer is about 10 kV/cm
    • …
    corecore