12 research outputs found

    Comparative analysis and characterization of the gut microbiota of four farmed snakes from southern China

    Get PDF
    Background The gut microbiota plays an important role in host immunity and metabolic homeostasis. Although analyses of gut microbiotas have been used to assess host health and foster disease prevention and treatment, no comparative comprehensive study, assessing gut microbiotas among several species of farmed snake, is yet available. In this study, we characterized and compared the gut microbiotas of four species of farmed snakes (Naja atra, Ptyas mucosa, Elaphe carinata, and Deinagkistrodon acutus) using high-throughput sequencing of the 16S rDNA gene in southern China and tested whether there was a relationship between gut microbiotal composition and host species. Results A total of 629 operational taxonomic units across 22 samples were detected. The five most abundant phyla were Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, and Actinobacteria, while the five most abundant genera were Bacteroides, Cetobacterium, Clostridium, Plesiomonas, and Paeniclostridium. This was the first report of the dominance of Fusobacteria and Cetobacterium in the snake gut. Our phylogenetic analysis recovered a relatively close relationship between Fusobacteria and Bacteroidetes. Alpha diversity analysis indicated that species richness and diversity were highest in the gut microbiota of D. acutus and lowest in that of E. carinata. Significant differences in alpha diversity were detected among the four farmed snake species. The gut microbiotas of conspecifics were more similar to each other than to those of heterospecifics. Conclusion This study provides the first comparative study of gut microbiotas among several species of farmed snakes, and provides valuable data for the management of farmed snakes. In farmed snakes, host species affected the species composition and diversity of the gut microbiota

    Comparison of Biochar- and Lime-Adjusted pH Changes in N<sub>2</sub>O Emissions and Associated Microbial Communities in a Tropical Tea Plantation Soil

    No full text
    The use of biochar and lime (CaO) is a common approach to mitigating soil acidification. However, little is known about how biochar and lime amendments impact N2O emissions and potential microbial mechanisms. We conducted a 45-day microcosm incubation experiment to examine N2O emission and associated functional guilds to biochar and lime amendment in an acidic tea plantation soil. Results show that lime and biochar treatments significantly reduced cumulative N2O emissions by 49.69% and 63.01%, respectively, while significantly increasing cumulative CO2 emissions by 27.51% and 19.35%, respectively. Additionally, lime and biochar treatments significantly decreased the abundances of bacterial nirK, nirS, nosZ and fungal nirK genes, while increasing that of the ammonia-oxidizing bacteria (AOB) and the complete ammonia-oxidizing bacteria (comammox) amoA genes. The stimulated or inhibitory effects of biochar on functional genes abundances were higher than lime. The N2O emission rate was positively linked with the abundance of the fungal nirK gene but was negatively correlated with AOB and comammox amoA genes abundances. The random forest and linear regression analysis revealed that fungal denitrifiers were the most important predictors of N2O emissions. Lime and biochar amendments reduced the alpha diversity and altered the community composition of nirK-harboring fungal denitrifiers. Ascomycota was the dominant fungal denitrifiers belonging to the families Nectriaceae, Aspergillaceae, and Chaetomiaceae, and the relative abundances of genera Chaetomium, Penicillium and Fusarium were positively correlated with N2O emissions. Overall, our findings suggest that biochar is more effective than lime in reducing N2O emissions, and this is likely due to the powerful effects it has on community traits of nirK-harboring fungal denitrifiers

    Control and Signal Acquisition System of Broad-Spectrum Micro-Near-Infrared Spectrometer Based on Dual Single Detector

    No full text
    Based on the scanning grating mirror developed by us, this paper presents a method for precise control of the scanning grating mirror and high-speed spectrum data acquisition. In addition, a system circuit of the scanning grating mirror control and a spectrum signal acquisition system were designed and manufactured. The final results of the experiment show that the control system successfully allowed the precise control of the swing of the scanning grating mirror and the acquisition system successfully carried out the high-speed acquisition and transmission of the spectrum and angle data. The spectrum detection range of the NIR spectrometer was 80–2532 nm. The overall resolution of the spectrum was better than 12 nm

    Integrated Soil–Crop System Management with Organic Fertilizer Achieves Sustainable High Maize Yield and Nitrogen Use Efficiency in Northeast China Based on an 11-Year Field Study

    No full text
    To increase crop productivity while reducing environmental costs, an integrated soil&ndash;crop system management (ISSM) strategy was developed and successfully adopted in China. However, little information is available on the long-term ISSM effects on maize agronomic and environmental performance. Therefore, we evaluated the effects of ISSM with combining inorganic and organic fertilizers on maize productivity, N use efficiency (NUE) and N balance and losses as compared with farmers&rsquo; practice (FP) and high-yielding practice (HY), based on an 11-year field experiment in Northeast China. Maize yield in ISSM (11.7&ndash;14.3 Mg ha&minus;1) achieved 97.7% of that in HY and was increased by 27% relative to FP. The excellent yield performance in ISSM was mainly attributed to optimum plant population structure and yield components. Annual N surplus in ISSM was only 7 kg ha&minus;1, which was considerably lower than that in FP (52 kg ha&minus;1) and HY (109 kg ha&minus;1). Consequently, ISSM obtained significantly lower N losses and greenhouse gases emissions and higher NUE. In contrast to FP, crop performance in ISSM showing better sustainability and inter-annual stability. In conclusion, ISSM is an effective strategy to achieve long-term sustainable high crop yields and NUE with less environmental costs in the intensive agricultural system

    Single-Mode-Tuned Tricolor Emissions of Upconversion/Afterglow Hybrids for Anticounterfeiting Applications

    No full text
    This work presents a highly secure anticounterfeiting strategy based on upconversion/afterglow hybrids with tricolor emissions tuned by a single 975 nm laser. The hybrids are composed of NaYF4:Yb/Tm and NaYF4:Yb/Er microrods and CaS:Eu2+ afterglow phosphors. Under 975 nm excitation, the hybrids exhibit multicolor emissions from green to white by adjusting laser power and then emit red afterglow light when the 975 nm laser is off. Under synergistic excitation of the blue-green light emitted by Tm/Er microrods, the red afterglow emission not only has a strong initial intensity but also lasts for 3 s. Obvious trichromatic changes from green to white to red can be observed by the naked eye. A pattern printed by the hybrid ink exhibits tricolor emissions by laser adjustment and switch. This proves that upconversion/afterglow hybrids are an excellent candidate for anticounterfeiting applications with high-level security but a simple recognition method

    Bioassessment of Macroinvertebrate Communities Influenced by Gradients of Human Activities

    No full text
    This study explores the impact of anthropogenic land use changes on the macroinvertebrate community structure in the streams of the Cangshan Mountains. Through field collections of macroinvertebrates, measurement of water environments, and delineation of riparian zone land use in eight streams, we analyzed the relationship between land use types, stream water environments, and macroinvertebrate diversities. The results demonstrate urban land use type and water temperature are the key environmental factors driving the differences in macroinvertebrate communities up-, mid-, and downstream. The disturbed streams had lower aquatic biodiversity than those in their natural state, showing a decrease in disturbance-sensitive aquatic insect taxa and a more similar community structure. In the natural woodland area, species distributions may be constrained by watershed segmentation and present more complex community characteristics

    The Joint Contributions of Environmental Filtering and Spatial Processes to Macroinvertebrate Metacommunity Dynamics in the Alpine Stream Environment of Baima Snow Mountain, Southwest China

    No full text
    While macroinvertebrates are extensively investigated in many river ecosystems, meta-community ecology perspectives in alpine streams are very limited. We assessed the role of ecological factors and temporal dynamics in the macroinvertebrate meta-community assembly of an alpine stream situated in a dry-hot valley of Baima Snow Mountain, China. We found that spatial structuring and environmental filtering jointly drive the structure of macroinvertebrate meta-community, with relative contributions to the variance in community composition changing over time. RDA ordination and variation partitioning indicate that environmental variables are the most important predictors of community organization in most scenarios, whereas spatial determinants also play a significant role. Moreover, the explanatory power, identity, and the relative significance of ecological factors change over time. Particularly, in the years 2018 and 2019, stronger environmental filtering was found shaping community assembly, suggesting that deterministic mechanisms predominated in driving community dynamics. However, spatial factors had a stronger predictive power on meta-community structures in 2017, implying conspicuous dispersal mechanisms which may be owing to increased connectivity amongst sites. Thereby, we inferred that the alpine stream macroinvertebrate metacommunity composition can be regulated by the interaction of both spatial processes and environmental filtering, with relative contributions varying over time. Based on these findings, we suggest that community ecology studies in aquatic systems should be designed beyond single snapshot investigations
    corecore