5 research outputs found

    Image_1_Seed bank dynamics and quality in the seagrass Halophila ovalis along estuarine salinity gradients—a case in the Swan-Canning Estuary.pdf

    No full text
    The seed bank of Halophila ovalis is crucial for resilience to disturbance through re-establishment. Understanding seasonal changes in abundance and quality of seeds in natural seed banks is critical for seed-based restoration. We selected an estuary in southwestern Australia and investigated the seasonal changes of seed distribution and viability in H. ovalis seed banks. We also adapted an X-ray viability test used for terrestrial seeds to test the viability of H. ovalis seeds. We then simulated the effect of low salinity on seed viability through a short-term indoor experiment. Seed density was significantly different between sites and seasons (0 to 43590 seeds·m-2), and the highest seed density in the seed banks was found after the reproductive season (May). The proportion of viable seeds in the seed bank was less than 22%, and was not subjected to substantial seasonal variability. The density of seeds in the seed bank decreased in spring, which indicated winter conditions were not prompt seed loss. We also predicted that extreme rainfall events and the resulting extremely low salinity would significantly reduce seed viability, and could decrease in seed germination; limit population recruitment. As it rapidly colonizes marine sediments from seeds, H. ovalis was considered an ideal seagrass for restoration purposes. Our results provide physiological information for H. ovalis seed banks to support seed-based restoration plans. Such understanding would enable accurate predictions about seagrass population resilience to extreme climate events in estuaries, where variable and extremely low salinity may limit seagrass population recovery from seeds through decreasing their viability.</p

    DataSheet_1_Seed bank dynamics and quality in the seagrass Halophila ovalis along estuarine salinity gradients—a case in the Swan-Canning Estuary.xlsx

    No full text
    The seed bank of Halophila ovalis is crucial for resilience to disturbance through re-establishment. Understanding seasonal changes in abundance and quality of seeds in natural seed banks is critical for seed-based restoration. We selected an estuary in southwestern Australia and investigated the seasonal changes of seed distribution and viability in H. ovalis seed banks. We also adapted an X-ray viability test used for terrestrial seeds to test the viability of H. ovalis seeds. We then simulated the effect of low salinity on seed viability through a short-term indoor experiment. Seed density was significantly different between sites and seasons (0 to 43590 seeds·m-2), and the highest seed density in the seed banks was found after the reproductive season (May). The proportion of viable seeds in the seed bank was less than 22%, and was not subjected to substantial seasonal variability. The density of seeds in the seed bank decreased in spring, which indicated winter conditions were not prompt seed loss. We also predicted that extreme rainfall events and the resulting extremely low salinity would significantly reduce seed viability, and could decrease in seed germination; limit population recruitment. As it rapidly colonizes marine sediments from seeds, H. ovalis was considered an ideal seagrass for restoration purposes. Our results provide physiological information for H. ovalis seed banks to support seed-based restoration plans. Such understanding would enable accurate predictions about seagrass population resilience to extreme climate events in estuaries, where variable and extremely low salinity may limit seagrass population recovery from seeds through decreasing their viability.</p

    Photocatalytic Characteristic of Semiconducting Mineral Anatase and Microbial Community in the Marine Euphotic Zone of the Beibu Gulf, South China Sea

    No full text
    This study has thoroughly uncovered the characteristics of the marine euphotic zone system in the Beibu Gulf, featuring adjacent semiconducting minerals and electrochemically active microbes, via mineralogical characterization, photoelectrochemical measurements, and microbiological analysis techniques. Notably, results of Raman and ESEM with EDS indicated that anatase, the semiconducting mineral with prominent photocatalytic performance, exists in large quantities in the Beibu Gulf. Photoelectrochemical measurements tested photoelectric response and redox activity of suspended particulate minerals, demonstrating the suspended particulates dominated by titanium and iron oxide semiconducting minerals presented excellent photo-response property and distinct photoelectric catalytic potential under visible light irradiation. Its significant property of photoelectric response with 110.483% increment ratio of the average photocurrent density relative to the dark current density. 16S amplicon sequence analysis revealed that the euphotic zone was dominated by Proteobacteria, Actinobacteria, and Cyanobacteria at the phylum level, and by Synechococcus CC9902, Cyanobium PCC-6307 and unclassified Ilumatobacteraceae at the genus level. Halomonas (0.2–1.2%), Vibrio (0.7–1.8%), and Nautella (0.1–1.1%), closely related to semiconducting minerals reduction reaction, were also presented in YL and RGS samples of the Beibu Gulf. This work firstly revealed that the neglected characteristics of the marine euphotic zone system in the Beibu Gulf of the South China Sea, which is an important natural ecosystem for microorganisms to uptake energy sources. It will provide a new perspective for further research on novel ways for microorganisms to acquire energy sources through semiconducting minerals in the marine euphotic zone system.</p

    Table_1_“Adjust Zang and arouse spirit” electroacupuncture ameliorates cognitive impairment by reducing endoplasmic reticulum stress in db/db mice.docx

    No full text
    IntroductionDiabetic cognitive impairment (DCI) is a chronic complication of the central nervous system (CNS) caused by diabetes that affects learning and memory capacities over time. Recently, acupuncture has been shown to improve cognitive impairment in streptozotocin-induced diabetic rats. However, the effects of electroacupuncture on DCI and its underlying mechanism have not yet been elucidated in detail. MethodsIn this study, we used db/db mice as DCI animal models which showed low cognitive, learning and memory functions. Electroacupuncture significantly ameliorated DCI, which is reflected by better spatial learning and memory function using behavioral tests. The db/db mice with cognitive impairment were randomly divided into a model group (Mod) and an electroacupuncture treatment group (Acup), while db/m mice were used as a normal control group (Con). First, the mice were subjected to behavioural tests using the Morris water maze (MWM), and body weight, blood glucose, insulin, triglycerides (TG) and total cholesterol (TC) were observed; HE, Nissl, and TUNEL staining were used to observe the morphological changes and neuronal apoptosis in the mice hippocampus; Finally, Western blot and rt-PCR were applied to detect the essential proteins and mRNA of ERS and insulin signalling pathway, as well as the expression levels of Tau and Aβ.ResultsElectroacupuncture significantly ameliorated DCI, which is reflected by better spatial learning and memory function using behavioral tests. Moreover, electroacupuncture attenuated diabetes-induced morphological structure change, neuronal apoptosis in the hippocampus of db/db mice. Our results revealed that electroacupuncture could regulate the expression levels of Tau and Aβ by improving hippocampal ERS levels in db/db mice, inhibiting JNK activation, attenuating IRS1 serine phosphorylation, and restoring normal transduction of the insulin signaling pathway.DiscussionIn summary, ERS and insulin signaling pathway paly causal roles in DCI development. Electroacupuncture can significantly alleviate the pathogenesis of DCI, improve mice's learning and memory ability, and improve cognitive dysfunction. This study adds to our understanding of the effect of acupuncture on DCI and opens the door to further research on DCI.</p
    corecore